

Shield Anchors

A4 Stainless Steel Shield Only

INFORMATION

The shield anchor is an A4-316 stainless steel three-way expansion shield suitable for use in concrete and brick.

The thick walls of the expanders give the anchor its exceptional grip and allow it to cater for oversized holes caused by powerful drills in weaker materials such as brickwork.

It provides a reliable fixing solution for general-purpose applications such as:

- Fencing
- Gates
- Pipe and ductwork
- Security Shutters
- Fire doors

BASE MATERIAL

- Concrete C20/25 to C50/60
- Non-Cracked Concrete
- Solid Brickwork
- Solid Concrete Blocks

FEATURES

- Three-way Expansion
- Medium Duty Anchor
- Stainless Steel A4-316
- Reaction To Fire Class A1

SOFTWARE

[Click here to download the software](#)

RELATED PRODUCTS

SDS+ Drill Bits

Hole Cleaning Pump

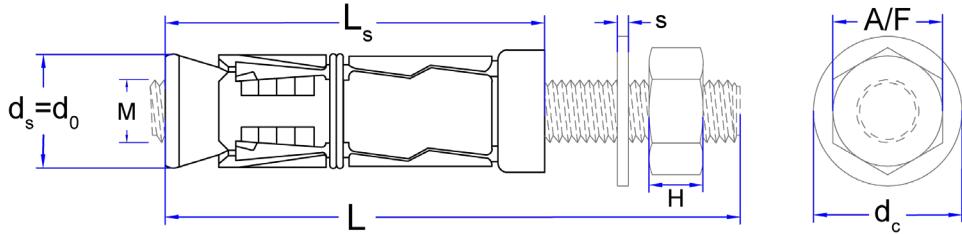
BOP1

Loose Bolt ZYP

Projecting Bolt ZYP

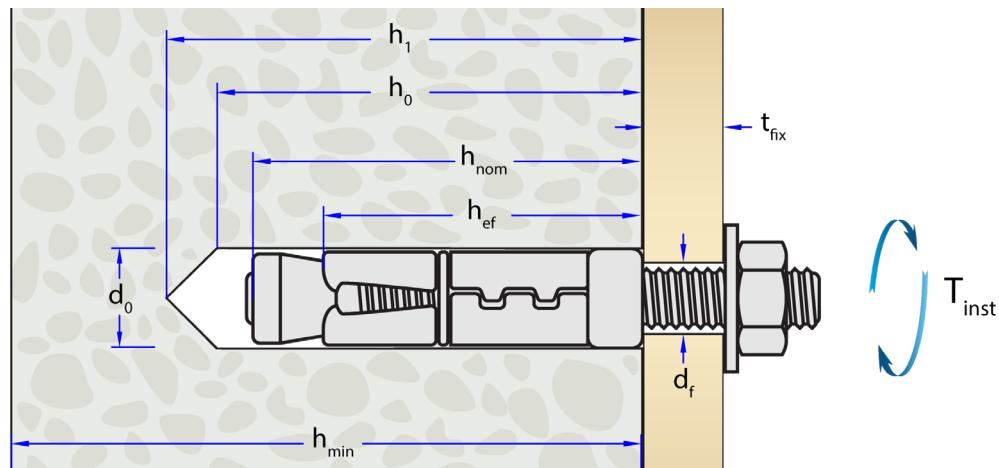
Shield only ZYP

Eye Bolt Shield Anchor ZYP



Hook Bolt Shield Anchor ZYP

RANGE DATA


RANGE DATA

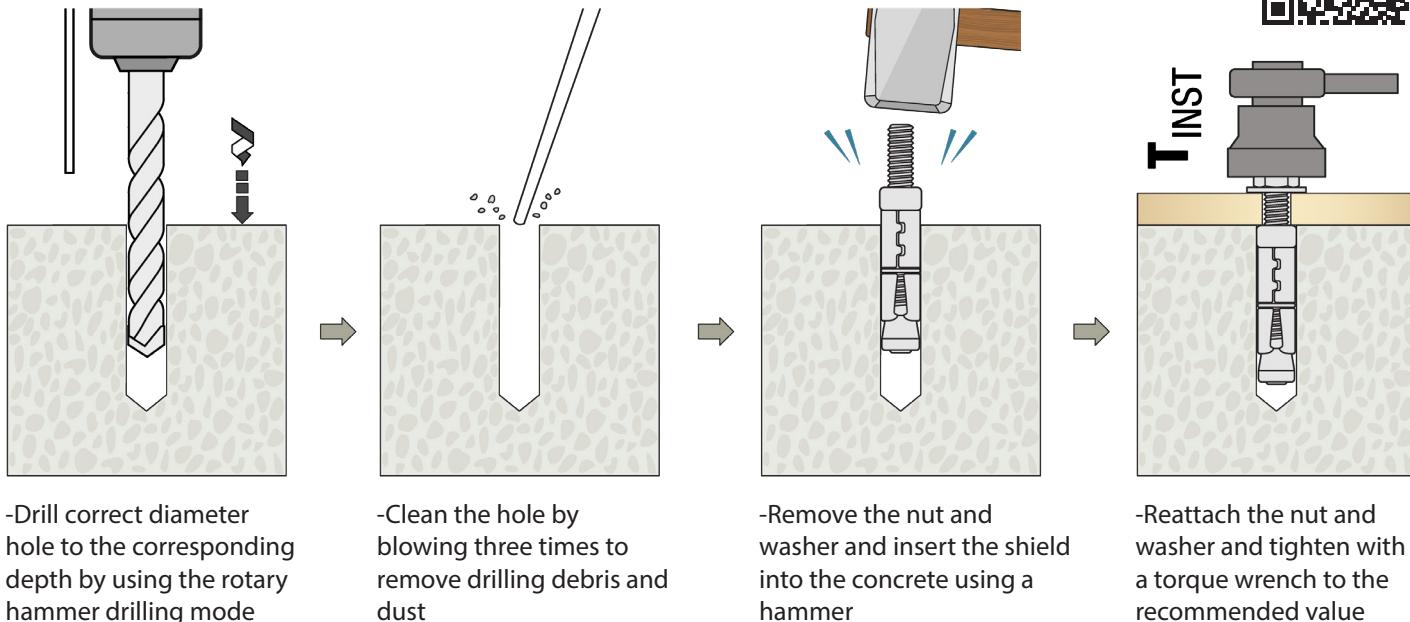
Part Number	Size of Thread	Sleeve Diameter = Drill Hole Diameter	Length	Shield Length	Head Height*	Width Across Flats*	Washer Diameter*	Washer Thickness*
	M	$d_s = d_0$	L	L_s	H	A/F	d_c	s
	mm	mm	mm	mm	mm	mm	mm	mm
PSM06SS	6	12	*	45	5.0	10	12	1.5
PSM08SS	8	14	*	50	5.5	13	16	1.5
PSM10SS	10	16	*	60	8.0	17	20	2.0
PSM12SS	12	20	*	75	10.0	19	24	2.5

* It is assumed that the nuts and washers are standard regular metric components. Accordingly, the required stud length (L) is calculated as the sum of the shield length (L_s), fixture thickness (t_{fix}), washer thickness (s), and nut height (H) corresponding to standard metric sizes, plus an allowance for five additional threads ($5 \times$ thread pitch) to ensure full thread engagement and proper installation tolerance.

$$L = L_s + t_{fix} + s + H + (5 \times P)$$

INSTALLATION INTO CONCRETE

RANGE DATA


Part Number	Drill Hole Diameter	Minimum Concrete Thickness	Minimum Hole Depth	Nominal Embedment Depth	Fixture Clearance Hole	Installation Torque	Minimum Spacing	Minimum Edge Distance
	d_0	h_{min}	h_1	h_{nom}	d_f	T_{inst}	(s_{min})	(c_{min})
	mm	mm	mm	mm	mm	Nm	mm	mm
PSM06SS	12	100	50	45	7	6	105	53
PSM08SS	14	100	55	50	9	14	120	60
PSM10SS	16	100	65	60	12	27	150	75
PSM12SS	20	120	85	75	14	46	180	90

INSTALLATION INSTRUCTIONS INTO SOLID CONCRETE

Click on the QR code or scan it to watch the video

-Drill correct diameter hole to the corresponding depth by using the rotary hammer drilling mode

-Clean the hole by blowing three times to remove drilling debris and dust

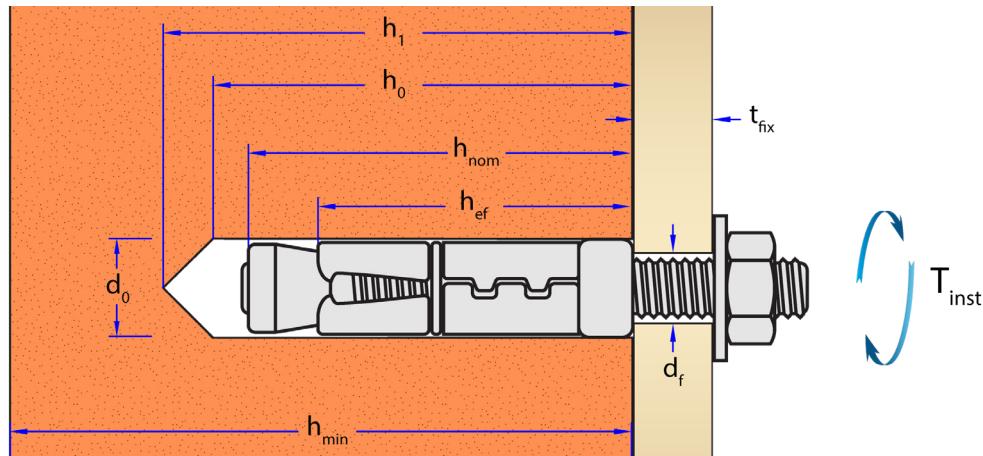
-Remove the nut and washer and insert the shield into the concrete using a hammer

-Reattach the nut and washer and tighten with a torque wrench to the recommended value

PERFORMANCE DATA FOR STRUCTURAL APPLICATIONS (NON-CRACKED CONCRETE)

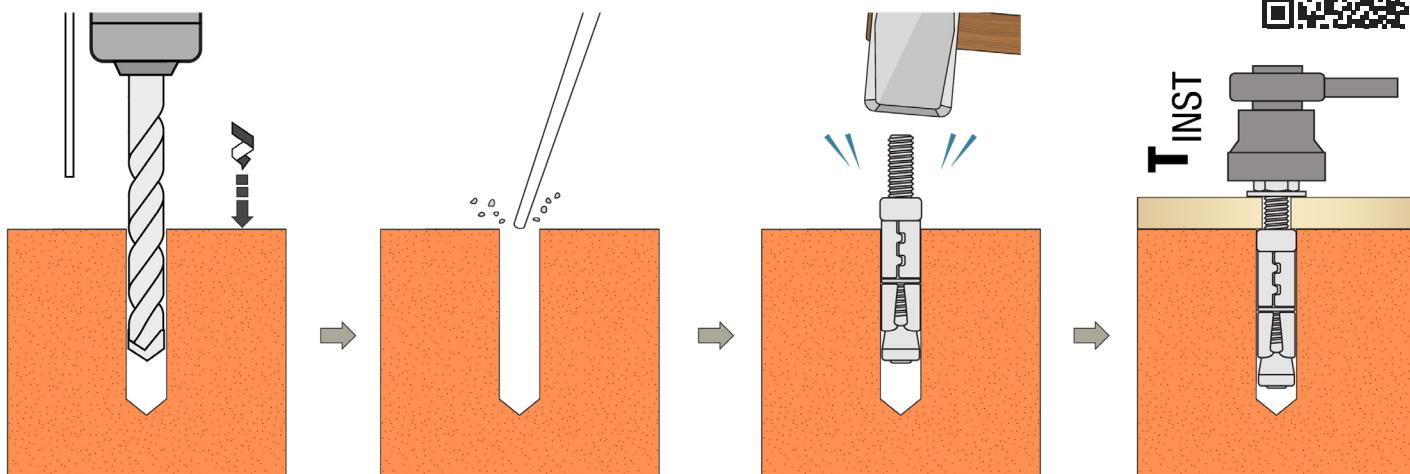
Performance Data* (C20/25 to C50/60 non-cracked concrete) - A4-70 Bolt*

Size of Thread	Drill Hole Diameter	Minimum Hole Depth	Minimum Concrete Thickness	Characteristic Resistance		Design Resistance		Recommended Resistance	
				Tensile (N_{RK})	Shear (V_{RK})	Tensile (N_{Rd})	Shear (V_{Rd})	Tensile (N_{Rrec})	Shear (V_{Rrec})
M	d_0	h_1	h_{min}						
mm	mm	mm	mm	kN	kN	kN	kN	kN	kN
6	12	50	100	3.6	7.0	2.0	4.4	1.4	3.1
8	14	55	100	4.5	12.8	2.5	8.2	1.7	5.8
10	16	65	100	7.2	17.9	4.0	11.9	2.8	8.5
12	20	85	120	9.6	29.5	5.3	18.9	3.7	13.5


* Important notes:

- Fasteners subject to static and quasi-static loads.
- Performance data stated for a single anchor, without the effect of spacing and edge distances. The influence of these parameters must be verified where applicable.
- Minimum concrete thickness, hole diameter, and embedment depth shall correspond to the dimensions stated in this document.
- Concrete strength class C20/25 to C50/60 is assumed.
- Stud A4-70 is assumed.
- Drill holes produced using rotary hammer drilling, unless otherwise noted.
- Installation carried out strictly in accordance with the product's Installation Instructions and performed by a trained operator.
- Characteristic and design resistances derived from JCP internal technical data.
- Design resistances are calculated from characteristic values using the appropriate partial safety factors corresponding to the decisive failure mode.
- The Recommended Resistance is calculated using an additional safety factor (γ_{Add}) equal to 1.4.
- Performance data is valid for shear loading without a lever arm; installations involving a lever arm require additional verifications.
- Performance data is not valid for combined tensile and shear loading; where combined loading occurs, further checks shall be performed.
- For project-specific assessments or conditions not explicitly covered, download the JCP Anchor Calculation Program.

INSTALLATION INTO SOLID BRICKWORK (20 N/mm²)


RANGE DATA

Part Number	Drill Hole Diameter	Minimum Hole Depth	Nominal Embedment Depth	Fixture Clearance Hole	Installation Torque	Minimum Spacing	Minimum Edge Distance
	d_0	h_1	h_{nom}	d_f	T_{inst}	(s_{min})	(c_{min})
	mm	mm	mm	mm	Nm	mm	mm
PSM06SS	12	50	45	7	5	*	*
PSM08SS	14	55	50	9	12	*	*
PSM10SS	16	65	60	12	22	*	*
PSM12SS	20	85	75	14	38	*	*

* Fixings shall be installed only in solid structural load-bearing brickwork and positioned centrally within the body of the brick. Anchors shall not be installed in the edge brick adjacent to a free edge. It is assumed that one fixing only is installed per brick unit, and spacing shall be such that anchors are not set in the same or in adjacent bricks, leaving at least one clear brick unit between fixings.

INSTALLATION INSTRUCTIONS INTO SOLID BRICKWORK (20 N/mm²)

Click on the QR code or scan it to watch the video

-Drill correct diameter hole to the corresponding depth by using the rotary hammer drilling mode

-Clean the hole by blowing three times to remove drilling debris and dust

-Remove the nut and washer and insert the shield into the substrate using a hammer

-Reattach the nut and washer and tighten with a torque wrench to the recommended value

Shield Anchors

A4 Stainless Steel Shield Only

PERFORMANCE DATA FOR APPLICATIONS INTO SOLID BRICKWORK (20 N/mm²)

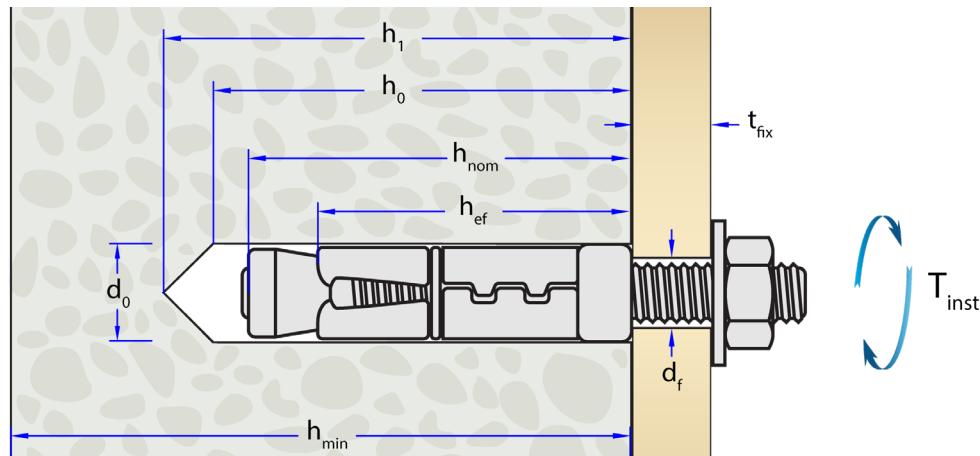
Performance Data* (Solid Brickwork 20N/mm ²) - A4-70 Bolt*							
Size of Thread	Drill Hole Diameter	Characteristic Resistance		Design Resistance		Recommended Resistance	
M	d ₀	Tensile (N _{Rk})	Shear (V _{Rk})	Tensile (N _{Rd})	Shear (V _{Rd})	Tensile (N _{Rrec})	Shear (V _{Rrec})
mm	mm	kN	kN	kN	kN	kN	kN
6	12	5.0		1.8		1.3	
8	14	5.5		2.0		1.4	
10	16	5.5		2.0		1.4	
12	20	5.5		2.0		1.4	

* Important notes:

- Fasteners subject to static and quasi-static loads.
- Performance data stated for a single anchor, without the effect of spacing and edge distances. The influence of these parameters must be verified where applicable.
- Stud A4-70 is assumed.
- It is assumed that anchors are installed centrally within the body of a 20 N/mm² brick, with one fixing only per brick unit.
- Anchors shall not be installed in the edge brick adjacent to a free edge, and spacing shall be arranged such that anchors are not installed in the same or in adjacent bricks.
- Drill holes produced using rotary hammer drilling, unless otherwise noted.
- Installation carried out strictly in accordance with the product's Installation Instructions and performed by a trained operator.
- Characteristic and design resistances derived from JCP internal technical data.
- Design resistances are calculated from characteristic values using the appropriate partial safety factors corresponding to the decisive failure mode.
- The Recommended Resistance is calculated using an additional safety factor (γ_{Add}) equal to 1.4.
- Performance data is valid for shear loading without a lever arm; installations involving a lever arm require additional verifications.
- Performance data is not valid for combined tensile and shear loading; where combined loading occurs, further checks shall be performed.

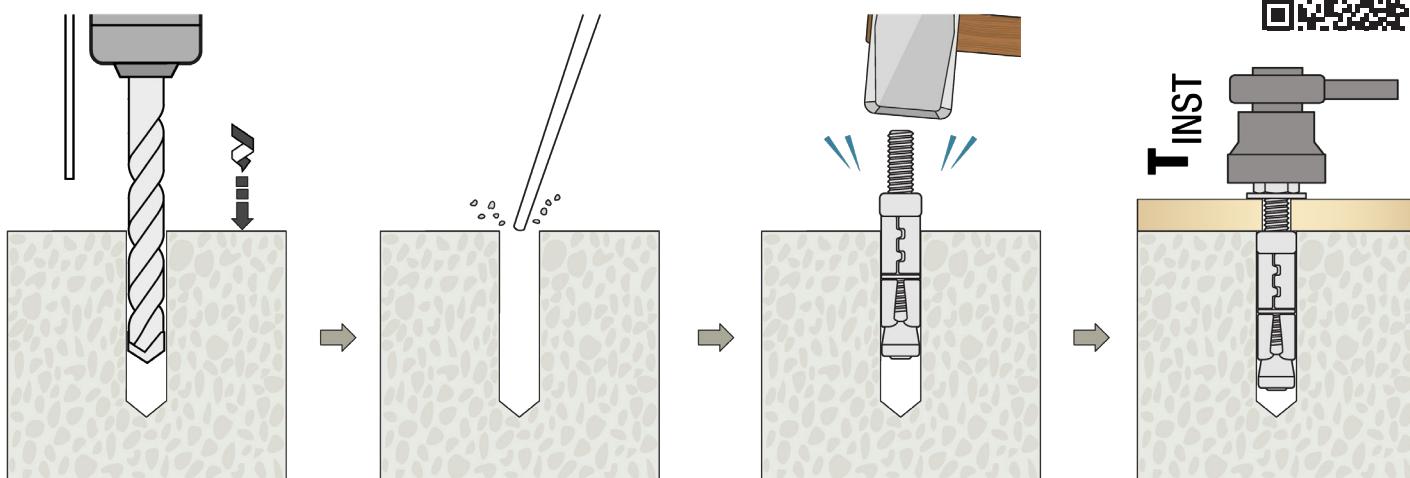
Due to the variable nature of bricks and blocks, the above figures are for guidance only.
For critical applications, a site test is recommended.

Unit 14 Teddington Business Park
Station Rd., Teddington, Middlesex
TW11 9BQ


Tel: +44 (0)20 8943 1800
Fax: +44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com
www.jcpfixings.co.uk

INSTALLATION INTO SOLID CONCRETE BLOCKS (7 N/mm²)



Part Number	RANGE DATA						
	Drill Hole Diameter	Minimum Hole Depth	Nominal Embedment Depth	Fixture Clearance Hole	Installation Torque	Minimum Spacing	Minimum Edge Distance
	d_0	h_1	h_{nom}	d_f	T_{inst}	(s_{min})	(c_{min})
PSM06SS	12	50	45	7	5	*	*
PSM08SS	14	55	50	9	12	*	*
PSM10SS	16	65	60	12	22	*	*
PSM12SS	20	85	75	14	38	*	*

* Fixings shall be installed only in solid structural load-bearing concrete block-work and positioned centrally within the body of the block. The minimum edge distance from the edge of the block shall be not less than $1.5 \times h_{\text{nom}}$. Where block dimensions permit, two or more anchors may be installed within the same block or in adjacent blocks, provided that the centre-to-centre spacing between anchors is not less than $3 \times h_{\text{nom}}$.

INSTALLATION INSTRUCTIONS INTO SOLID CONCRETE

Click on the QR code or scan it to watch the video

-Drill correct diameter hole to the corresponding depth by using the rotary hammer drilling mode

-Clean the hole by blowing three times to remove drilling debris and dust

-Remove the nut and washer and insert the shield into the concrete using a hammer

-Reattach the nut and washer and tighten with a torque wrench to the recommended value

Shield Anchors

A4 Stainless Steel Shield Only

PERFORMANCE DATA FOR APPLICATIONS INTO SOLID CONCRETE BLOCKS (7 N/mm²)

Performance Data* (Solid Concrete Block 7N/mm ²) - A4-70 Bolt*							
Size of Thread	Drill Hole Diameter	Characteristic Resistance		Design Resistance		Recommended Resistance	
M	d ₀	Tensile (N _{Rk})	Shear (V _{Rk})	Tensile (N _{Rd})	Shear (V _{Rd})	Tensile (N _{Rrec})	Shear (V _{Rrec})
mm	mm	kN	kN	kN	kN	kN	kN
6	12	4.0		1.4		1.0	
8	14	5.7		2.0		1.5	
10	16	5.7		2.0		1.5	
12	20	5.7		2.0		1.5	

* Important notes:

- Fasteners subject to static and quasi-static loads.
- Performance data stated for a single anchor, without the effect of spacing and edge distances. The influence of these parameters must be verified where applicable.
- Stud A4-70 is assumed.
- It is assumed that anchors are installed centrally within the body of a 7 N/mm² concrete block, with one fixing only per block unit.
- Anchors shall not be installed in the edge block adjacent to a free edge.
- Drill holes produced using rotary hammer drilling, unless otherwise noted.
- Installation carried out strictly in accordance with the product's Installation Instructions and performed by a trained operator.
- Characteristic and design resistances derived from JCP internal technical data.
- Design resistances are calculated from characteristic values using the appropriate partial safety factors corresponding to the decisive failure mode.
- The Recommended Resistance is calculated using an additional safety factor (γ_{Add}) equal to 1.4.
- Performance data is valid for shear loading without a lever arm; installations involving a lever arm require additional verifications.
- Performance data is not valid for combined tensile and shear loading; where combined loading occurs, further checks shall be performed.

Due to the variable nature of bricks and blocks, the above figures are for guidance only.
For critical applications, a site test is recommended.

