

eota@tzus.cz

European Technical Assessment

ETA 17/0011 of 13/01/2017

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product JCP Epoxy Resin JF375E & JF300E

Product family to which the construction product belongs

Product area code: 33

Bonded injection type anchor for use in cracked and non-cracked concrete

Manufacturer Hexstone Ltd.

Opal Way, Stone Business Park Stone, Staffordshire, ST15 OSW

United Kingdom

Manufacturing plant JCP Construction Products

This European Technical Assessment contains

22 pages including 19 Annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

ETAG 001-Part 1 and Part 5, edition 2013, used as European Assessment Document (EAD)

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The JCP Epoxy Resin JF375E & JF300E with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance for tension loads - threaded rod	See Annex C 1			
Characteristic resistance for tension loads - rebar	See Annex C 2			
Characteristic resistance for shear loads - threaded rod	See Annex C 3			
Characteristic resistance for shear loads - rebar	See Annex C 4			
Characteristic resistance for tension loads - threaded rod	See Annex C 5			
Characteristic resistance for tension loads - rebar	See Annex C 6			
Characteristic resistance for shear loads - threaded rod	See Annex C 7			
Characteristic resistance for shear loads - rebar	See Annex C 8			
Displacement for threaded rod	See Annex C 9			
Displacement for rebar	See Annex C 10			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

5.2 Tasks of the notified bodies

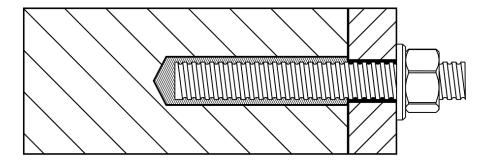
The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

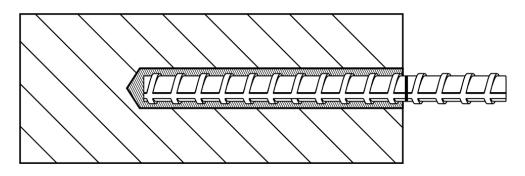
In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

Issued in Prague on 13.01.2017

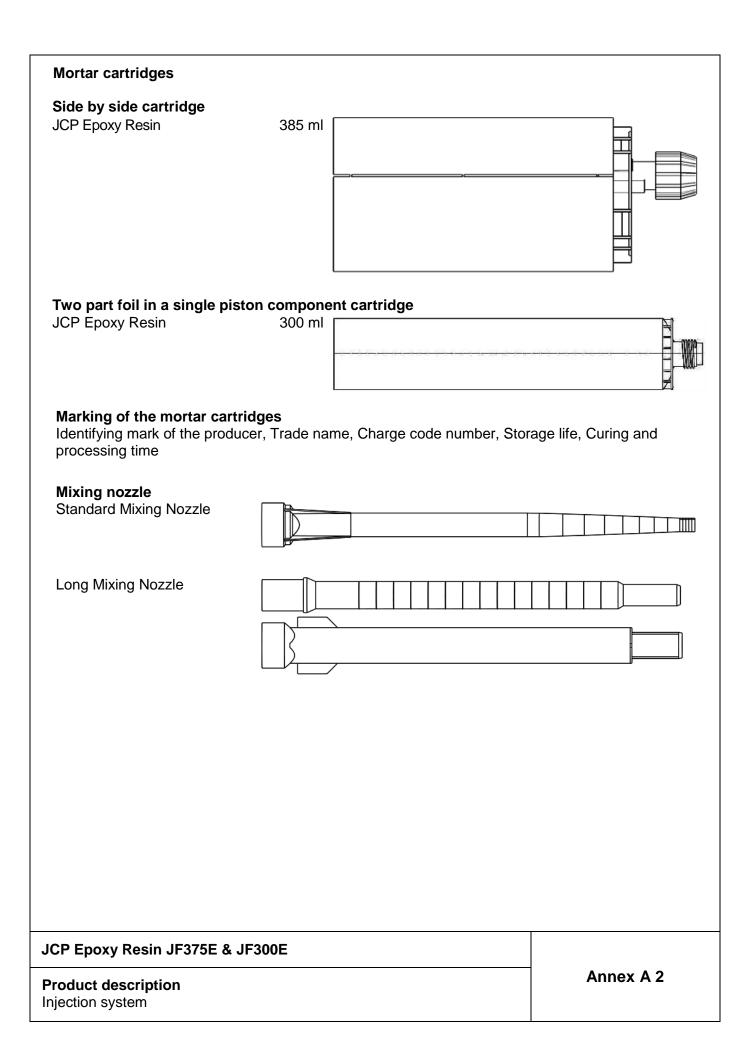
By

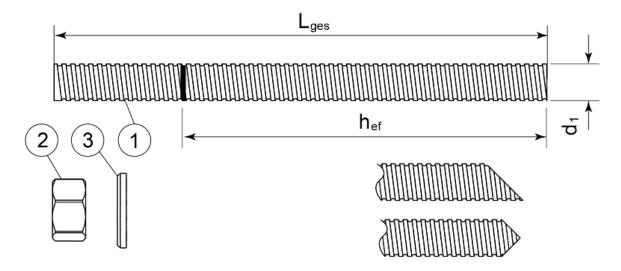

Ing. Mária Schaan

Head of the Technical Assessment Body


Official Journal of the European Communities L 254 of 08.10.1996

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Threaded rod


Reinforcing bar

JCP Epoxy Resin JF375E & JF300E	
Product description	Annex A 1
Installed conditions	

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material					
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or							
Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or							
Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811							
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1					
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2					
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod					
Stainl	ess steel						
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506					
2	Hexagon nut EN ISO 4032	According to threaded rod					
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod					
High (corrosion resistant steel						
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1					
2	Hexagon nut EN ISO 4032	According to threaded rod					
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod					

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

JCP Epoxy Resin JF375E & JF300E	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods			
Class		В	О		
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to 600			
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at maximum for	Characteristic strain at maximum force ε _{uk} (%)				
Bendability	Bendability				
Maximum deviation from nominal					
mass (individual bar) (%)	±6,0				
	±4	1 ,5			
Bond: Minimum relative rib area,	Nominal bar size (mm)				
$f_{R,min}$	min 8 to 12				
	> 12	0,0)56		

JCP Epoxy Resin JF375E & JF300E	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

Base materials

- Cracked and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

• -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- Structures subject to external atmospheric exposure including industrial and marine environment, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistance steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistance steel).
- Structures subject to permanently damp internal condition, with particular aggressive conditions exist (high corrosion resistance steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use categories:

• Category 2 – installation in dry or wet concrete or in flooded hole.

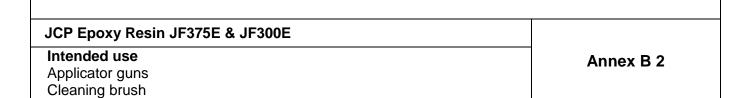
Design:

- The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors" under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

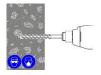
- Dry or wet concrete or flooded hole.
- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

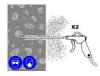
JCP Epoxy Resin JF375E & JF300E	
Intended use Specifications	Annex B 1



Applicator gun	A	В	С	D
Cartridge	Side by side	Side by side	Side by side	Foil capsule
	385 ml	385 ml	385 ml	300 ml

Cleaning steel brush


Brush extensions


Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

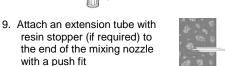
Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 6bar.

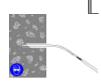
Perform the blowing operation twice.

Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.


- 4. Repeat 2 (a) or (b)
- 5. Repeat 3
- Repeat 2 (a) or (b)
- 7. Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.



Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two sections firmly together until a positive engagement is felt.

8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use

MICEEUTETT (

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

- 11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting

motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

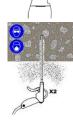
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

JCP Epoxy Resin JF375E & JF300E

Intended use Installation procedure Annex B 3


Installation instructions

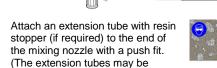
Overhead Substrate Installation Method

Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

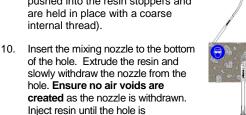
Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 90psi (6bar).

Perform the blowing operation twice.

Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There


ould be positive interaction between the steel stles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.


- Repeat 2 (a) or (b)
- 5. Repeat 3
- Repeat 2 (a) or (b)
- Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

pushed into the resin stoppers and

nozzle from the hole. 11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it

reaches the bottom of the hole.

approximately 3/4 full and remove the

Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- Clean any excess resin from around the mouth of the hole.
- Do not disturb the anchor until at 13. least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

Position the fixture and tighten the anchor to the appropriate installation torque.

> Do not over-torque the anchor as this could adversely affect its performance.

JCP Epoxy Resin JF375E & JF300E

Intended use Installation procedure Annex B 4

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	Tinst	[Nm]	10	20	40	80	120	160	180	200
Min. embedment depth										
Embedment depth	hef	[mm]	60	60	70	80	90	96	108	120
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	100 mm			$h_{ef} + 2d_0$		
Max. embedment depth										
Embedment depth	hef	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	80	100	120	160	200	240	270	300
Minimum spacing	Smin	[mm]	80	100	120	160	200	240	270	300
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	I00 mm	h _{ef} + 2d ₀				

Table B2: Installation parameters of rebar

rable bz. Ilistaliation parami	01010 0	TODA								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20	25	32	40	
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF	
Torque moment	Tinst	[Nm]	10	20	40	80	120	180	200	
Min. embedment depth										
Embedment depth	h _{ef}	[mm]	60	60	70	80	90	100	128	
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70	
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70	
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 100) mm	h _{ef} + 2d ₀				
Max. embedment depth										
Embedment depth	hef	[mm]	160	200	240	320	400	500	640	
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	
Minimum edge distance	Cmin	[mm]	80	100	120	160	200	250	320	
Minimum spacing	Smin	[mm]	80	100	120	160	200	250	320	
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 100) mm		h _{ef} + 2d ₀			

Table B3: Cleaning

All diameters							
- 2 x blowing							
- 2 x brushing							
- 2 x blowing							
- 2 x brushing							
- 2 x blowing							

Table B4: Minimum curing time

Table 24. Minimidan carring time									
Base Material Temperature	Cartridge	T Work	T Load						
[°C]	Temperature [°C]	[mins]	[hrs]						
+5		300	24						
+5°C to +10	Minimum +10	150	24						
+10°C to +15	+10°C to +15	40	18						
+15°C to +20	+15°C to +20	25	12						
+20°C to +25	+20°C to +25	18	8						
+25°C to +30	+25°C to +30	12	6						
+30°C to +35	+30°C to +35	8	4						
+35°C to +40	+35°C to +40 +35°C to +40								
	Ensure cartridge is ≥ 10°	C							

T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

JCP Epoxy Resin JF375E & JF300E	
Intended use Installation parameters Curing time	Annex B 5

Table C1: Design method TR 029 Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resi	stance									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs ¹⁾	[-]				2,	00			
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	$\gamma \text{Ms}^{1)}$	[-]	1,50							
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs ¹⁾	[-]	1,50							
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	$\gamma_{\rm Ms}^{1)}$	[-]				1,3	33			
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γ _{Ms} 1)	[-]				1,	87			
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs ¹⁾	[-]				1,	60			
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs ¹⁾	[-]	1,50							
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs ¹⁾	[-]				1,	87			

Pullout failure in concrete C2	Pullout failure in concrete C20/25										
Size	Size				M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistan	ce in non-	crac	ked conc	rete		•	-	_	-	-	=
Temperature range: -40°C to +70°C τ _{Rk} [N/m			[N/mm ²]	14	13	13	12	12	11	10	9
Dry, wet concrete, flooded ho	ole										
Partial safety factor	γι	lc ¹⁾	[-]				1,	5 ²⁾			
Factor for non-cracked concret	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	ψc	[-]	1,02 1,04 1,06 1,07 1,08 1,09							
Characteristic bond resistand	ce in crac	ked	concrete								
Temperature range: -40°C to +70	O°C τ	Rk	[N/mm ²]	8	8	7,5	7,5	7	7	5	5
Dry, wet concrete, flooded he											
Partial safety factor	γм	lc ¹⁾	[-]				1,	5 ²⁾			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψc	[-]				1,(1,(1,(1,(1,(04 06 07 08			

Splitting failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance	Ccr,sp	[mm]	2 • h _{ef}							
Spacing	S _{cr,sp}	[mm]	2 • C _{cr,sp}							
Partial safety factor	γMsp ¹⁾	[-]	1,8							

JCP Epoxy Resin JF375E & JF300E	
Performances	Annex C 1
Design according to TR 029	Aimex 6 1
Characteristic resistance for tension loads - threaded rod	

 $^{^{1)}}$ In absence of national regulations $^{2)}$ The partial safety factor γ_2 =1,0 is included

Table C2: Design method TR 029 Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs ¹⁾	[-]				1,4			

Pullout failure in concrete C20/25									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance	in non-crac	ked cond	rete						
Temperature range: -40°C to +70°	°C τrk	$[N/mm^2]$	12	12	12	11	11	11	7
Dry and wet concrete									
Partial safety factor	γ _{Mc} 1)	[-]				$1,5^{2)}$			
Flooded hole									
Partial safety factor	γMc ¹⁾	[-]				1,8 ³⁾			
Factor for non-cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				1,02 1,04 1,06 1,07 1,08 1,09			
Characteristic bond resistance	e in cracked	concrete							
Temperature range: -40°C to +70°	C τrk	[N/mm ²]	7	10	9	9	8	8	5
Dry and wet concrete							•		
Partial safety factor	γMc ¹⁾	[-]				1,5 ²⁾			
Flooded hole									
Partial safety factor	γ _{Mc} 1)	[-]				1,8 ³⁾			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				1,02 1,04 1,06 1,07 1,08 1,09			

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}						
Spacing	Scr,sp	[mm]	2 • Ccr,sp						
Partial safety factor	γ _{Msp} 1)	[-]	1,8						

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to TR 029	Annex C 2
Characteristic resistance for tension loads - rebar	

¹⁾ In absence of national regulations
²⁾ The partial safety factor γ_2 =1,0 is included
³⁾ The partial safety factor γ_2 =1,2 is included

Table C3: Design method TR 029 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	$\gamma_{\rm Ms}^{1)}$	[-]				1,	67			
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	$\gamma_{\rm Ms}^{1)}$	[-]				1,	25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs ¹⁾	[-]	1,25							
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γ _{Ms} 1)	[-]				1	,5			
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs ¹⁾	[-]				1,	56			
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms} 1)	[-]				1,	33			
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms} 1)	[-]	1,25						·	
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs ¹⁾	[-]				1,	56			

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]				1,	67			
Steel grade 5.8	$M^{o}_{Rk,s}$	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]				1,	25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]				1,	25			
Steel grade 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]	1,50							
Stainless steel grade A2-70, A4-70	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]				1,	56			
Stainless steel grade A4-80	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γ Ms $^{1)}$	[-]				1,	33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γ Ms $^{1)}$	[-]				1,	25			
Stainless steel grade 1.4565	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	$\gamma { m Ms}^{1)}$	[-]				1,	56			
Concrete pryout failure										
Factor k from TR 029						-	2			
Design of bonded anchors, Part 5.2.3.										
Partial safety factor	γMp ¹⁾	[-]				1	,5			

Concrete edge failure									
Size	M8	M10	M12	M16	M20	M24	M27	M30	
See section 5.2.3.4 of Technical Report TR 029 for the Design of Bonded Anchors									
Partial safety factor γ _{Mc} ¹⁾ [-]				1,	,5				

¹⁾ In absence of national regulations

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to TR 029 Characteristic resistance for shear loads - threaded rod	Annex C 3

Table C4: Design method TR 029 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	221
Partial safety factor	γ _{Ms} 1)	[-]				1,5			

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	1º _{Rk,s}	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor γ	/Ms ¹⁾	[-]				1,5			
Concrete pryout failure		-							
Factor k from TR 029						2			
Design of bonded anchors, Part 5.2.3.3									
Partial safety factor	γMp ¹⁾	[-]				1,5			

Concrete edge failure								
Size	9	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
See section 5.2.3.4 of Technical Report TR 029 for the Design of Bonded Anchors								
Partial safety factor γ _{Mc} ¹⁾ [-]	γмс ¹⁾ [-] 1,5							

¹⁾ In absence of national regulations

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to TR 029 Characteristic resistance for shear loads - rebar	Annex C 4

Table C5: Design method CEN/TS 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resis	stance									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms} 1)	[-]					,00	1		
Steel grade 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γ _{Ms} ¹⁾	[-]			<u> </u>		,50			
Steel grade 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γ _{Ms} ¹⁾	[-]		I			50			
Steel grade 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs ¹⁾	[-]		•	•	1,	,33		•	
Stainless steel grade A2-70, A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γ _{Ms} 1)	[-]		•	•	1,	,87		•	
Stainless steel grade A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs ¹⁾	[-]					,60			
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs ¹⁾	[-]					,50	•	•	
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γ _{Ms} 1)	[-]					,87			
Pullout failure in concrete C20/25	-									
Size				M8	M10 I	W12 M	16 M2	0 M2	4 M27	′ M30
Characteristic bond resistance in	non-cracke	d con	crete	<u>-</u>	<u> </u>	*	<u>.</u>	<u> </u>	<u> </u>	
Temperature range: -40°C to +70°C	τ_{Rk}	[N	/mm²]	14	13	13 1	2 12	2 11	10	9
Dry, wet concrete, flooded hole										
Partial safety factor	γ _{Mc} 1)		[-]				1,5 ²⁾			
	C25/30						1,02			
	C30/37						1,04			
Factor for non-cracked concrete	C35/45	J _C	[-]				1,06			
	C40/50						1,07			
	C45/55						1,08			
Footon coording to CENTS 1000 1 F	C50/60	<u> </u>					1,09			
Factor according to CEN/TS 1992-4-5							10,1			
Characteristic bond resistance in						7.F. 7	- -		T =	T =
Temperature range: -40°C to +70°C	τRk	[N	/mm ²]	8	8	7,5 7	,5 7	7	5	5
Dry, wet concrete, flooded hole	1)	ı	r 1				1,5 ²⁾			
Partial safety factor	γ _{Mc} 1) C25/30		[-]				1,02			
	C30/37						1,02			
	C35/45						1,04			
Factor for cracked concrete	C40/50 4	Jc	[-]				1,00			
	C45/55						1,08			
	C50/60						1,09			
Factor according to CEN/TS 1992-4-5		2 k 8	1				7,2			-
Concrete cone failure							·			
Factor according to CEN/TS 1992-4-5	Section 6.2.1	2	kucr				10,1			
	Occilor 0.2.		kcr				7,2			
Edge distance	Ccr,N		nm]				2 • h _{ef}			
Spacing	Scr,N	(r	nm]				2 • Ccr,sp			
Splitting failure										
Edge distance	Ccr,sp		nm]				2 • h _{ef}			
Spacing	Scr,sp	[r	nm]				2 • C _{cr,sp}			
Partial safety factor	γMsp ¹⁾		[-]				1,8			

¹⁾ In absence of national regulations
2) The partial safety factor γ₂=1,0 is included

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to CEN/TS 1992-4	Annex C 5
Characteristic resistance for tension loads - threaded rod	

Table C6: Design method CEN/TS 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resis	stance								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs ¹⁾	[-]				1,4			•
Pullout failure in concrete C20/25								_	
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	non-cracked	concrete							
Temperature range: -40°C to +70°C	$ au_{Rk}$	[N/mm ²]	12	12	12	11	11	11	7
Dry and wet concrete									
Partial safety factor	γMc ¹⁾	[-]				1,5 ²⁾			
Flooded hole									
Partial safety factor	γ _{Mc} 1)	[-]				1,83)			
Factor for non-cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55	[-]				1,02 1,04 1,06 1,07 1,08			
Factor according to CEN/TS 1992-4-5	C50/60	k ₈	1,08 1,09 7,2						
•		· ·				1,2			
Characteristic bond resistance in				T	Τ _	Τ_		I _	
Temperature range: -40°C to +70°C	τRk	[N/mm ²]	7	10	9	9	8	8	5
Dry and wet concrete	1)					4 =2\			
Partial safety factor	γ _{Mc} ¹⁾	[-]				1,5 ²⁾			
Flooded hole	4)					2)			
Partial safety factor Factor for cracked concrete	γ _{Mc} 1) C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-] [-]	1,8 ³⁾ 1,02 1,04 1,06 1,07 1,08 1,09						
Factor according to CEN/TS 1992-4-5	Section 6.2.2	k ₈				10,1			
Concrete cone failure									
Factor according to CEN/TS 1992-4-5	Section 6.2.3	kucr				10,1			
Edge distance	C _{cr,N}	[mm]				2 • h _{ef}			
Spacing	Scr,N	[mm]				2 • Ccr,sp	ı		
Splitting failure		-							
Edge distance	C _{cr,sp}	[mm]				2 • h _{ef}			
Spacing	S _{cr,sp}	[mm]				2 • Ccr,sp	1		
Partial safety factor	γMsp ¹⁾	[-]				1,8			
,	1 1					,-			

JCP Epoxy Resin JF375E & JF300E	
Performances	Annex C 6
Design according to CEN/TS 1992-4	
Characteristic resistance for tension loads - rebar	

¹⁾ In absence of national regulations
²⁾ The partial safety factor γ_2 =1,0 is included
³⁾ The partial safety factor γ_2 =1,2 is included

Table C7: Design method CEN/TS 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
	1/	FIz N I I	7	12	17	31	49	71	92	112
Steel grade 4.6	$V_{Rk,s}$ $\gamma_{Ms}^{(1)}$	[kN] [-]	/	12	17		67	/ 1	92	112
Partial safety factor								00	445	4.40
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γMs ¹⁾	[-]	4.5		0.4		25		404	00.4
Steel grade 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs ¹⁾	[-]	4.0		40		25		000	201
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γ _{Ms} 1)	[-]					,5			
Stainless steel grade A2-70, A4-70	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms} 1)	[-]					56			
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms} 1)	[-]					33			
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ Ms $^{1)}$	[-]			1		25			
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms} 1)	[-]				1,	56			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1		k_2				0	,8			
Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	M ^o _{Rk,s}	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γ _{Ms} ¹⁾	[-]	10	00	02		67	1 10	000	000
Steel grade 5.8	M ^o _{Rk,s}	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs ¹⁾	[-]	10	07	00		25	001	002	1120
Steel grade 8.8	M ^o _{Rk,s}	[N.m]	30	60	105	266	519	898	1332	1700
Partial safety factor	γMs ¹⁾	[-]	00	00	100		25	000	1002	1700
Steel grade 10.9	Mo _{Rk,s}	[N.m]	37	75	131	333	649	1123	1664	2240
Partial safety factor	γMs ¹⁾	[-]	01	, , ,	101		50	11120	100+	ZZTO
·	I IVIS					٠,				
IStainless steel grade A2-70 A1-70	Mo _{Dir}		26	52	92	233	1 151	786	1165	157/
Stainless steel grade A2-70, A4-70	Mo _{Rk,s}	[N.m]	26	52	92	233	454 56	786	1165	1574
Partial safety factor	γ Ms $^{1)}$	[N.m] [-]		ı		1,	56			
Partial safety factor Stainless steel grade A4-80	γ _{Ms} 1) Mo _{Rk,s}	[N.m] [-] [N.m]	30	52 60	92	1, 266	56 519	786 898	1165	
Partial safety factor Stainless steel grade A4-80 Partial safety factor	γ _{Ms} ¹⁾ M ^o _{Rk,s} γ _{Ms} ¹⁾	[N.m] [-] [N.m] [-]	30	60	105	1, 266 1,	56 519 33	898	1332	1799
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529	$\gamma_{Ms}^{1)}$ $M^{o}_{Rk,s}$ $\gamma_{Ms}^{1)}$ $M^{o}_{Rk,s}$	[N.m] [-] [N.m] [-] [N.m]		ı		1, 266 1, 233	56 519 33 454	898		1799
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{M}^{\text{o}} \text{Rk,s} \\ \gamma \text{Ms}^{1)} \\ \hline \text{M}^{\text{o}} \text{Rk,s} \\ \gamma \text{Ms}^{1)} \end{array}$	[N.m] [-] [N.m] [-] [N.m]	30	60 52	105 92	1, 266 1, 233 1,	56 519 33 454 25	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m]	30	60	105	1, 266 1, 233 1, 233	56 519 33 454 25 454	898	1332	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{M}^{\text{o}} \text{Rk,s} \\ \gamma \text{Ms}^{1)} \\ \hline \text{M}^{\text{o}} \text{Rk,s} \\ \gamma \text{Ms}^{1)} \end{array}$	[N.m] [-] [N.m] [-] [N.m]	30	60 52	105 92	1, 266 1, 233 1, 233	56 519 33 454 25	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-]	30	60 52	105 92	1, 266 1, 233 1, 233	56 519 33 454 25 454	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-]	30	60 52	105 92	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3	$\begin{array}{c} \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m]	30	60 52	105 92	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454 56	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor	$\begin{array}{c} \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \\ \gamma \text{Ms}^{1)} \\ \hline \text{Mo}_{\text{Rk,s}} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-]	30	60 52	105 92	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454 56	898	1332 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor Concrete edge failure	$\begin{array}{c} \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m]	30 26 26	52 52	92	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454 56 ,0 ,5	898 786 786	1332 1165 1165	1799 1574 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor Concrete edge failure Size	$\begin{array}{c} \gamma_{Ms}^{1)} \\ \hline M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \\ \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m]	30	60 52	105 92	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454 56	898	1332 1165 1165	1799 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor Concrete edge failure Size See section 6.3.4 of CEN/TS 1992-4-6	$\begin{array}{c} \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	30 26 26	52 52	92 92 M12	1, 266 1, 233 1, 233 1,	56 519 33 454 25 454 56 ,0 ,5	898 786 786	1332 1165 1165	1799 1574 1574
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor Concrete edge failure Size See section 6.3.4 of CEN/TS 1992-4-5 Effective length of anchor	$\begin{array}{c} \gamma_{Ms}^{1)} \\ \hline M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \hline M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \hline M^{o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \hline \gamma_{Ms}^{1)} \\ \hline \\ \gamma_{Mp}^{1)} \\ \hline \\ 5 \\ \hline I_{f} \\ \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [-]	30 26 26 M8	52 52 M10	92 92 M12	1, 266 1, 233 1, 233 1, 2 1	56 519 33 454 25 454 56 ,0 ,5	786 786 M24	1165 1165 M27	1799 1574 1574 M30
Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor according to CEN/TS 1992-4-5 Section 6.3.3 Partial safety factor Concrete edge failure Size See section 6.3.4 of CEN/TS 1992-4-6	$\begin{array}{c} \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \overline{M^o}_{Rk,s} \\ \gamma_{Ms}^{1)} \\ \end{array}$	[N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	30 26 26	52 52	92 92 M12	1, 266 1, 233 1, 233 1, 2 1 M16	56 519 33 454 25 454 56 ,0 ,5	898 786 786	1332 1165 1165	1799 1574 1574

1)	n a	bsence	of	na	tional	l regu	lations
----	-----	--------	----	----	--------	--------	---------

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to CEN/TS 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 7

Table C8: Design method CEN/TS 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	221
Partial safety factor	γ Ms $^{1)}$	[-]				1,5			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1		k ₂				0,8			

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$M^{o}_{Rk,s}$	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs ¹⁾	[-]				1,5			
Concrete pryout failure									
Factor according to CEN/TS 1992-4-5 Section 6.3.3		k 3				2,0			
Partial safety factor	γMp ¹⁾	[-]				1,5			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
See section 6.3.4 of CEN/TS 1992-4-5									
Effective length of anchor	lf	[mm]			$I_f = m$	in(h _{ef} ;8	d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	30
Partial safety factor	γ _{Mc} 1)	[-]				1,5			

¹⁾ In absence of national regulations

JCP Epoxy Resin JF375E & JF300E	
Performances Design according to CEN/TS 1992-4	Annex C 8
Characteristic resistance for shear loads - rebar	

Table C9: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load							_	
Non-c	racked c	oncret	е						
F	[kN]	11,9	14,3	19,0	23,8	35,7	35,7	45,2	45,2
δνο	[mm]	0,3	0,3	0,3	0,4	0,4	0,5	0,5	0,5
δn∞	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Crack	ed conci	ete							
F	[kN]	5,7	9,5	14,3	16,7	23,8	28,6	28,6	28,6
δνο	[mm]	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,7
δn∞	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Shear	load								
F	[kN]	3,5	5,5	8,0	15,0	23,3	33,6	43,7	53,4
δνο	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
δν∞	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7

JCP Epoxy Resin JF375E & JF300E	
Performances Displacement for threaded rod	Annex C 9

Table C10: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensio	on load							
Non-c	racked c	oncrete)					
F	[kN]	7,6	11,9	16,7	28,6	35,7	45,2	66,7
δ_{N0}	[mm]	0,3	0,3	0,4	0,4	0,4	0,5	0,5
δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Crack	ed concr	ete	_	_	_	3	-	-
F	[kN]	5,7	9,5	11,9	19,0	23,8	28,6	35,7
δ_{N0}	[mm]	0,3	0,4	0,4	0,5	0,5	0,5	0,6
δ _{N∞}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Shear	load		3	3	3	3	-	-
F	[kN]	6,6	10,3	14,8	26,3	41,1	64,3	105,3
δ_{V0}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5
δ∨∞	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7

JCP Epoxy Resin JF375E & JF300E	
Performances Displacement for rebar	Annex C 10