#### Nail In Socket CONSTRUCTION PRODUCTS INFORMATION **BASE MATERIAL APPROVALS** European Technical Assessment The Nail In Socket is a Concrete C12/15 Multiple Use For Non-Structural Applications In Concrete hammer in dual thread anchor • Concrete C20/25 To C50/60 for multiple use in non-structural Cracked/Non-Cracked Concrete concrete applications. Lightweight Suspended The fast and accurate Ceilings ETA-11/0240 Fire Resistance installation along with auto expansion feature provide a rapid secure fixing. **FEATURES** • The Dual Thread allows for the Auto Expanding Action use of M8 or M10 thread rod ETA-11/0240 Fast And Secure Installation with the need for only one No Torgue Wrench Required socket. • Reaction to Fire Class A1 • The choice of M8 and M10 Fire Resistant Classification gives options for the diameter R120 of threaded rod being used. Dual Thread M8+M10 **RELATED PRODUCTS** SD06 M8 or M10

SDS+ Drill Bits

Hole Cleaning Pump

Threaded Rods

-M8

SOCKET LONGITUDINAL CROSS SECTION

-M10

## **RANGE AND LOAD DATA**

| RANGE DATA  |                       |                                         |                   |                              |                              |                               |                 |  |  |  |
|-------------|-----------------------|-----------------------------------------|-------------------|------------------------------|------------------------------|-------------------------------|-----------------|--|--|--|
| Part Number | Drill Hole Hole Depth |                                         | Overall<br>Length | Effective<br>Embedment Depth | M8 Internal<br>Thread Length | M10 Internal<br>Thread Length | Across<br>Flats |  |  |  |
|             | (d <sub>0</sub> )     | (d <sub>0</sub> ) (h <sub>1</sub> ) (L) |                   | (h <sub>ef</sub> )           | (I <sub>Th</sub> )           | (I <sub>Th</sub> )            | (AF)            |  |  |  |
|             | mm                    | mm                                      | mm                | mm                           | mm                           | mm                            | mm              |  |  |  |
| Dual Thread |                       |                                         |                   |                              |                              |                               |                 |  |  |  |
| NAS0625     | 6                     | 35                                      | 58 25             |                              | 7                            | 10                            | 13              |  |  |  |
| NAS0630     | 6                     | 40                                      | 63                | 30                           | 7                            | 10                            | 13              |  |  |  |



Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Section 2012 Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

25mm



### **C12/15 CRACKED/NON-CRACKED CONCRETE**

CONSTRUCTION PRODUCTS

| Performance Data (C12/15 cracked/non-cracked concrete) |                                                    |                               |                                                       |                                                      |                                                      |                       |                             |  |  |  |
|--------------------------------------------------------|----------------------------------------------------|-------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------|-----------------------------|--|--|--|
| Part<br>Number                                         | Effective<br>Embedment Depth<br>(h <sub>ef</sub> ) | Minimum<br>Concrete Thickness | Characteristic Resist-<br>ance                        | Design<br>Resistance                                 | Approved<br>Resistance                               | Design<br>Spacing (s) | Design<br>Edge Distance (c) |  |  |  |
|                                                        |                                                    | (h <sub>min</sub> )           | Tensile (N <sub>Rk</sub> )/ Shear* (V <sub>Rk</sub> ) | Tensile (N <sub>Rd</sub> )/ Shear (V <sub>Rd</sub> ) | Tensile (N <sub>Ra</sub> )/ Shear (V <sub>Ra</sub> ) | Tensile/Shear         | Tensile/Shear               |  |  |  |
| -                                                      | mm                                                 | mm kN                         |                                                       | kN                                                   | kN kN                                                |                       | mm                          |  |  |  |
| NAS0625                                                | 25                                                 | 80                            | 3.0                                                   | 2.0                                                  | 1.4                                                  | 100                   | 100                         |  |  |  |
| NAS0630                                                | 30                                                 | 80                            | 4.0                                                   | 2.7                                                  | 1.9                                                  | 100                   | 100                         |  |  |  |

#### C20/25-C50/60 CRACKED/NON-CRACKED CONCRETE

| Performance Data (C20/25-C50/60 cracked/non-cracked concrete) |                              |                               |                                                       |                                                |                                                |                       |                             |  |  |
|---------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-----------------------------|--|--|
| Part<br>Number                                                | Effective<br>Embedment Depth | Minimum<br>Concrete Thickness | Characteristic Resist-<br>ance                        | Design<br>Resistance                           | Approved<br>Resistance                         | Design<br>Spacing (s) | Design<br>Edge Distance (c) |  |  |
|                                                               | (h <sub>ef</sub> )           | (h <sub>min</sub> )           | Tensile (N <sub>Rk</sub> )/ Shear* (V <sub>Rk</sub> ) | Tensile ( $N_{_{Rd}}$ )/ Shear ( $V_{_{Rd}}$ ) | Tensile ( $N_{_{Ra}}$ )/ Shear ( $V_{_{Ra}}$ ) | Tensile/Shear         | Tensile/Shear               |  |  |
| -                                                             | mm                           | mm                            | kN                                                    | kN                                             | kN                                             | mm                    | mm                          |  |  |
| NAS0625                                                       | 25 80                        |                               | 4.5                                                   | 3.0                                            | 2.1                                            | 100                   | 100                         |  |  |
| NAS0630                                                       | 30                           | 80                            | 5.9                                                   | 3.9                                            | 2.8                                            | 100                   | 100                         |  |  |

\* In case of shear load, shear load with lever arm should be proven by considering  $M_{Rks}^0$ =12.7 (Nm)

# **FIRE RESISTANCE DATA**

| Fire* Resistance Data (C20/25 to C50/60 cracked/non-cracked concrete)** |                              |                               |                               |             |             |               |                               |             |             |               |
|-------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|-------------|-------------|---------------|-------------------------------|-------------|-------------|---------------|
| Part                                                                    | Effective Embedment<br>Depth | Minimum Concrete<br>Thickness | Design Resistance             |             |             |               | Approved Resistance           |             |             |               |
| Number (h <sub>ef</sub> ) (h <sub>min</sub> )                           |                              |                               | Tensile (N <sub>Rd,fi</sub> ) |             |             |               | Tensile (N <sub>Ra,fi</sub> ) |             |             |               |
| -                                                                       | mm                           | mm                            | 30min (R30)                   | 60min (R60) | 90min (R90) | 120min (R120) | 30min (R30)                   | 60min (R60) | 90min (R90) | 120min (R120) |
| Tensile Load                                                            |                              |                               |                               |             |             |               |                               |             |             |               |
| NAS0625                                                                 | 25                           | 80                            | 0.6                           | 0.6         | 0.6         | 0.5           | 0.4                           | 0.4         | 0.4         | 0.4           |
| NAS0630                                                                 | 30                           | 80                            | 0.8                           | 0.7         | 0.6         | 0.6           | 0.6                           | 0.5         | 0.4         | 0.4           |

| Fire Resistance Data (C20/25 to C50/60 cracked/non-cracked concrete) |                              |                               |                                                        |             |             |                     |                                                        |             |             |               |
|----------------------------------------------------------------------|------------------------------|-------------------------------|--------------------------------------------------------|-------------|-------------|---------------------|--------------------------------------------------------|-------------|-------------|---------------|
| Part                                                                 | Effective Embedment<br>Depth | Minimum Concrete<br>Thickness | Design Resistance                                      |             |             | Approved Resistance |                                                        |             |             |               |
| Number                                                               | (h <sub>ef</sub> )           | (h <sub>min</sub> )           | Bending Moment (M <sup>0</sup> <sub>Rd.fi</sub> ) (Nm) |             |             |                     | Bending Moment (M <sup>0</sup> <sub>Ra,fi</sub> ) (Nm) |             |             |               |
| -                                                                    | mm                           | mm                            | 30min (R30)                                            | 60min (R60) | 90min (R90) | 120min (R120)       | 30min (R30)                                            | 60min (R60) | 90min (R90) | 120min (R120) |
| Shear Load With Lever Arm                                            |                              |                               |                                                        |             |             |                     |                                                        |             |             |               |
| NAS0625                                                              | 25                           | 80                            | 0.7                                                    | 0.7         | 0.6         | 0.5                 | 0.5                                                    | 0.5         | 0.4         | 0.4           |
| NAS0630                                                              | 30                           | 80                            | 0.7                                                    | 0.7         | 0.6         | 0.5                 | 0.5                                                    | 0.5         | 0.4         | 0.4           |

\* Only in connection with threaded rod class 5.8. When applying the shear load, shear load with lever arm should be proven.

\*\* The determination covers anchors with a fire attack from one side only. If the fire attack is from more than one side, the design method may be taken only, if the edge distance of the anchor is  $c \geq 300 \text{ mm}$  and  $\geq 2 \text{ h}_{_{\mathrm{ef}}}.$ 



O Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ



jcpenquiries@owlett-jaton.com Ø www.jcpfixings.co.uk





# **INSTALLATION INSTRUCTIONS**

CONSTRUCTION PRODUCTS





-Drill correct diameter hole to corresponding depth

-Clean hole by blowing to remove drilling debris and dust

-Check the coupling nut is completely tightened

-Insert anchor into concrete by using a suitable hammer

-Use the desired threaded rod

For variations in structure thickness, reduced spacing and edge calculations download the free Anchor Calculation Program from www.jcpfixings.co.uk



O Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ

Ç Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com Ø www.jcpfixings.co.uk

