Internal Threaded Sockets

Product Information

The Internal threaded Sockets provide a flush fixing which allows for the attachment of a suitable bolt or threaded rod.

Available in Zinc Plated, A2/304 and A4/316 Stainless Steel versions

Features

- 1. Expansion free
- 2. High Loads
- Close Spacing and Edge Distance
- 4. Allows removal of bolt to leave a re-usable socket in place

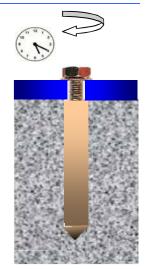
Data is for Spin In Capsules and Vinylester (Highload) Resin

	Socket Data										
	Part Number			Socket	Internal	Drill	Hole	Fixture	Minimum	Installation	
Zinc	Stainless	Use	Diam	Length	Thread	Hole	Depth	Clearance	Structure	Torque	
Plated	Steel	With		Ĭ	Length	Diam	·	Hole	Thickness	·	
	A2-304	Capsule	mm	mm	mm	mm	mm	mm	mm	Nm	
ITSM08BZP	ITSM08SS	JCAPSM12	8	90	30	14	90	10	110	7	
ITSM10BZP	ITSM10SS	JCAPSM16	10	90	35	18	90	12	120	11	
ITSM12BZP	ITSM12SS	JCAPSM16	12	90	40	25	90	14	140	25	
ITSM016ZP	ITSM16SS	JCAPSM16	16	125	40	28	125	18	160	50	

For A4/316 Stainless Steel version add A4 after Stainless Steel code

Installation Instructions

Drill correct diameter hole to correct depth


Clean hole by brushing and blowing to remove all dust and drilling debris

Insert Spin In Capsule with air bubble nearest to surface of concrete

Attach setting tool to socket and spin in with drilling machine using rotary hammer action flush with surfacel

Allow resin to cure, attach fixture, insert bolt and tighten to Recommended Torque

For injection resin inject resin to fill hole approx 1/3 full and insert socket rotating by hand to ensure even distribution of resin

For injection resin installation it is advisable to insert a bolt into the socket prior to installation to prevent resin entering the internal thread of the socket

Page 1 of 2 02/03.2017

Internal Threaded Sockets

	Performance Data (C20/25 Concrete)											
Thread	Characteristic		Des	Design Recommended		Recommended Spacing		Edge D	istance			
Diam	Resis	sistance Resistance Resistance										
mm	ki	N	k	N	kN		mm	mm mm				
	Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile & Shear	Tensile	Shear			
8	25.6	9.0	12.2	7.2	8.7	5.7	135	80	90			
10	35.5	14.0	16.9	11.2	12.1	8.5	180	90	125			
12	43.5	21.0	20.7	16.8	14.8	11.3	200	100	160			
16	76.9	39.0	36.6	31.2	26.1	14.2	250	125	270			

Shear Resistance towards a free edge is for single anchors where Spacing \geq 3 x Edge Distance Loads are for Grade 5.8 Bolts and Grade 70 Stainless Steel Bolts

Reduced Design Resistance (kN) • Divide Resistance by 1.4 for Recommended Resistance

	Edge	Distar	ice (C2	0/25 (Concrete) fo	r singl	e anch	ors	
Edge	Τe	ensile Re	esistanc	е		S	hear Re	sistance)
mm	M8	M10	M12	M16		M8	M10	M12	M16
45	8.5					3.6			
50	9.0	11.6				4.0			
55	9.5	12.3	14.2			4.4			
60	10.1	13.0	14.9			4.8			
65	10.6	13.6	15.6			5.2	5.8		
70	11.1	14.3	16.4	24.3		5.6	6.3		
80	12.2	15.6	17.8	25.3		6.4	7.2	8.4	
90		16.9	19.3	27.4		7.2	8.1	9.5	
100			20.7	29.4			9.0	10.5	
110				31.5			9.9	11.6	
120				33.5			10.8	12.6	
125				36.6			11.2	13.1	
140								14.7	16.2
160								16.8	18.5
180									20.8
200									23.1
220									25.4
250									28.9
270									31.2

Spacing (C20/25 Concrete)									
Spacing	Tensile Resistance per Pair of Anchors								
mm		M8	M10	M12	M16				
70	1	18.5							
80		19.4							
90		20.3							
100		21.2	26.3						
110		22.1	27.2						
120		23.0	28.2	33.1					
135		24.4	29.6	34.7					
150			31.0	36.2	58.6				
160			31.9	37.3	60.0				
170			32.9	38.3	61.5				
180			33.8	39.3	63.0				
190				40.4	64.4				
200				41.4	65.9				
210					67.3				
220					68.8				
230					70.3				
240					71.7				
250					73.2				

Influence of concrete strength

Concrete Strength		C20/25	C25/30	C30/37	C40/50	C50/60
Cylinder	N/mm²	20	25	30	40	50
Cube	N/mm²	25	30	37	50	60
Factor		1.00	1.10	1.22	1.41	1.55

When using concrete factors check all other information to ensure Steel Stength and Pull out Resistance is not exceeded

Steel Design Resistance for single anchor

		М8	M10	M12	M16	
Tension	kN	12.0	19.3	28.0	52.0	Grade 5.8 Bolts
	kN	13.9	21.4	31.5	58.8	Stainless Steel Grade 70
Shear	kN	7.2	11.2	16.8	31.2	Grade 5.8 Bolts
	kN	8.3	12.8	18.5	35.2	Stainless Steel Grade 70

Anchor mechanical properties

		М8	M10	M12	M16	
Nominal Tensile N/mm²		500	500	500	500	Zinc plated
Strength	IN/IIIII12	700	700	700	700	Stainless Steel
Viold Ctrop ath	ath N/mm²	400	400	400	400	Zinc plated
Yield Strength	14/111111-	450	450	450	450	Stainless Steel

Page 2 of 2 02/03/2017