

eota@tzus.cz

Designated according to Article 29 of Regulation (EU) No 305/2011

European Technical Assessment

ETA 19/0786 of 06/02/2021

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	AWA Throughbolt
Product family to which the construction product belongs	Product area code: 33 Torque controlled expansion anchor for use in uncracked concrete
Manufacturer	Hexstone Ltd. T/A JCP Construction Products OpalWay, Stone Business Park Stone, Staffordshire, ST15 OSW United Kingdom
Manufacturing plant	JCP Plant 588
This European Technical Assessment contains	9 pages including 7 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330232-00-0601 Mechanical fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The AWA Throughbolt are through-fixing torque-controlled expansion anchors in sizes of M6, M8, M10, M12, M16, M20 and M24. Each type comprises a nut, bolt, washer and expansion clip. The anchors are made from steel with zinc plating.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the clip. The expansion of this clip applies the anchorage.

The installed anchor is shown in Annex 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/463/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 06.02.2021

By

Ing. Mária Schaan Head of the Technical Assessment Body

¹ Official Journal of the European Communities L 198/31 25.7.1997

Table A1 – Materials

Component	Material	Coating
1 Bolt		
2 Expansion clip	Steel grade Q195, according to S185	Zinc plated ≥ 5 µm
3 Washer	(1.0035) according to EN 10025	according EN ISO 4042
4 Hexagonal nut		

Table A2 – Material properties

Component	M6 – M16	M20 – M24		
Bolt: nominal tensile strength [N/mm	315 - 430			
Bolt: yield strength	195	185		

Table A3 – Marking

Head mark	Length L [mm]					
А	53	-	76			
В	77	-	92			
С	93	-	105			
D	106	-	125			
Ш	126	-	150			
F	151	-	180			
G	181	-	220			
Н	221	-	280			

Table A4 – Dimensions

	Φd _k	Lc	A/F ¹⁾	d ₂
Size	[mm]	[mm]	[mm]	[mm]
M6	$5.85^{\pm0,3}$	12.6 ^{-0,5}	10 ^{-0,5}	12 ^{-0,5}
M8	$\textbf{7.85}^{\pm0,3}$	15.5 ^{-0,5}	13 ^{-0,5}	16 ^{-0,5}
M10	$9.85^{\pm0,3}$	17.5 ^{-0,5}	17 ^{-0,5}	20 ^{-0,5}
M12	11.85 ^{±0,3}	20.5 ^{-0,5}	19 ^{-0,5}	24 ^{-0,5}
M16	$15.85^{\pm0,3}$	24.0 ^{-0,5}	24 ^{-0,5}	30 ^{-0,5}
M20	19.85 ^{±0,3}	27.5 ^{-0,5}	30 ^{-0,5}	37 ^{-0,5}
M24	$23.85^{\pm0,3}$	29.0 ^{-0,5}	36 ^{-0,5}	44 ^{-0,5}
1) to nouse summer	ماغام بيبنا ماجام			

¹⁾ torque wrench width

AWA Throughbolt

Product description Materials Marking

Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206.

Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of the torque moment using a calibrated torque wrench.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

AWA Throughbolt

Intended use Specifications

Table B1 - Installation parameters										
Anchor size			M6	M8	M10	M12	M16	M20	M24	
Nominal diameter of drill bit	do	[mm]	6	8	10	12	16	20	24	
Installation torque	T _{inst}	[Nm]	7	20	35	55	100	150	280	
Standard embedment										
Minimum thickness of concrete	\mathbf{h}_{min}	[mm]	100	100	110	130	170	210	240	
Depth of drilled hole	h₁	[mm]	55	65	75	85	115	135	155	
Overall anchor embedment depth	h_{nom}	[mm]	48	60	67	77	105	125	143	
Effective anchorage depth	h _{ef}	[mm]	40	50	55	65	85	105	120	
Minimum spacing	Smin	[mm]	50	65	70	85	110	135	155	
Minimum edge distance	Cmin	[mm]	50	65	70	85	110	135	155	
	Rec	luced e	mbedm	nent						
Minimum thickness of concrete	\mathbf{h}_{min}	[mm]	-	100	100	100	140	160	185	
Depth of drilled hole	h₁	[mm]	-	50	60	70	100	110	125	
Overall anchor embedment depth	h_{nom}	[mm]	-	45	52	62	90	100	115	
Effective anchorage depth	h _{ef}	[mm]	-	35	40	50	70	80	92	
Minimum spacing	Smin	[mm]	-	65	70	85	110	135	155	
Minimum edge distance	C _{min}	[mm]	-	65	70	85	110	135	155	

AWA Throughbolt

Intended use Installation parameters

Size				M6	M8	M10	M12	M16	M20	M24
Steel failure										
Characteristic re	esistance	$N_{Rk,s}$	[kN]	5,7	10,5	16,6	24,2	45,8	70,7	102,0
Partial safety fac	ctor	γ _{Ms} 1)	[-]			1,94			2,	04
Pull-out failure										
		Stand	lard e	mbedme	ent dept	h				
Characteristic res in uncracked con	sistance crete C20/25	N _{Rk,p}	[kN]	-	-	-	24	36	42	55
		Redu	iced e	mbedme	ent deptl	<u>1</u>				_
Characteristic res in uncracked con	sistance crete C20/25	N _{Rk,p}	[kN]		11 ²⁾	12	19	32	40	45
Installation safe	ty factor	γinst	[-]				1,0			
	C30/37			1		1,08			1,12	
Increasing factor for concrete C40/50		ψc	[-]	1	1,15 1,23					
	C50/60			1	1 1,19 1,30			1,30		
Concrete cone	failure and splitting	g failu	ire							
Factor for uncrac	ked concrete	k _{ucr,N}	[-]				11,0			
Installation safet	y factor	γ_{inst}	[-]				1,0			
		Stand	lard e	mbedme	ent dept	th				
Effective anchor	age depth	h _{ef}	[mm]	40	50	55	65	85	105	120
Concrete conc	Spacing	S _{cr,N}	[mm]				$3 \cdot h_{\text{ef}}$			
	Edge distance	Ccr,N	[mm]				1,5 · h _{ef}	:		
Splitting	Spacing	Scr,sp	[mm]	160	200	220	260	340	420	480
Spiitting	Edge distance	Ccr,sp	[mm]	80	100	110	130	170	210	240
		Redu	iced ei	mbedme	ent deptl	า				
Effective anchor	age depth	h _{ef}	[mm]		35 ²⁾	40	50	70	80	92
Spacing		S _{cr,N}	[mm]				3 ·	h _{ef}		
	Edge distance	C _{cr,N}	[mm]				1,5	• h _{ef}		
Splitting	Spacing	Scr,sp	[mm]		140	160	200	280	320	370
Splitting	Edge distance	Coron	[mm]		70	80	100	140	160	184

¹⁾ in absence of other national regulations
²⁾ restricted to anchoring statically indeterminate structural components

Table C2 – Displacement under tension load

Size			M6	M8	M10	M12	M16	M20	M24
Tension load in uncracked concrete	Ν	[kN]	2,6	5,2	9,0	11,4	17,1	20,0	26,2
Diaplocoment	δ_{N0}	[mm]	0,70	0,25	1,05	1,90	2,13	1,54	1,37
Displacement -		[mm]	2,41	2,41	2,41	2,41	2,41	2,41	2,41

AWA Throughbolt	
Performances	Annex C 1
Characteristic resistance under tension load	
Displacement under tension load	

Size			M6	M8	M10	M12	M16	M20	M24
Steel failure without lever arm									
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	3,2	5,8	9,1	13,3	24,7	38,6	55,6
Ductility factor	k 7	[-]	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Partial safety factor	γ _{Ms} 1)	[-]		•	1,62	•		1,	70
Steel failure with lever arm									
Characteristic resistance	M⁰ _{Rk,s}	[Nm]	4,8	11,8	23,6	41,3	104,9	204,5	353,6
Partial safety factor	γ _{Ms} 1)	[-]			1,62			1,	70
Concrete pry-out failure									
	Stand	dard ei	mbedm	ent dept	th				
Concrete pry-out failure factor	k ₈	[-]	1,0	1,0	1,0	2,0	2,0	2,0	2,0
	Redu	uced e	mbedme	ent depth	า				
Concrete pry-out failure factor	k ₈	[-]		1,0 ²⁾	1,0	1,0	2,0	2,0	2,0
Installation safety factor	γinst	[-]				1,0			
Concrete edge failure									
	Stand	dard ei	mbedm	ent dept	th				
Effective length of anchor	lf	[mm]	40	50	55	65	85	105	120
	Redu	uced e	mbedme	ent depth	า				
Effective length of anchor	lf	[mm]		35 ²⁾	40	50	70	80	92
Anchor diameter	d _{nom}	[mm]	6	8	10	12	16	20	24
Installation safety factor	γinst	[-]				1,0			

¹⁾ in absence of other national regulations
²⁾ restricted to anchoring statically indeterminate structural components

Table C4 – Displacement under shear load

Size			M6	M8	M10	M12	M16	M20	M24
Shear load in uncracked concrete	V	[kN]	1,5	2,7	4,4	6,3	11,8	18,4	26,5
Displacement	δ_{V0}	[mm]	0,57	0,57	0,56	1,19	2,02	3,58	4,29
	δv∞	[mm]	0,85	0,85	0,84	1,78	3,03	5,38	6,43

AWA Throughbolt	
Performances	Annex C 2
Characteristic resistance under shear load	
Displacement under shear load	