

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

ETA-13/0364

of 7 May 2015

European Technical Assessment

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product JCP Option 1 Throughbolt and Option 1 Throughbolt ITS Product family Torque controlled expansion anchor for use to which the construction product belongs in concrete Manufacturer Hexstone Ltd. T/A JCP Construction Products **Opal Way** Stone Business Park, Stone Staffordshire ST 15 0SW . GROSSBRITANNIEN Manufacturing plant Plant 2, Germany This European Technical Assessment 32 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal issued in accordance with Regulation (EU) anchors for use in concrete", ETAG 001 Part 2: "Torque No 305/2011, on the basis of controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt.de | www.dibt.de

European Technical Assessment ETA-13/0364 English translation prepared by DIBt

Page 2 of 32 | 7 May 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 32 | 7 May 2015

European Technical Assessment ETA-13/0364 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The JCP Option 1 Throughbolt and Option 1 Throughbolt ITS is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type Option 1 Throughbolt with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type Option 1 Throughbolt ITS S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type Option 1 Throughbolt ITS SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type Option 1 Throughbolt ITS B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for Option 1 Throughbolt	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for Option 1 Throughbolt	See Annex C 6
Characteristic resistance for static and quasi static action for Option 1 Throughbolt ITS	See Annex C 10 to C 12
Displacements under tension loads for Option 1 Throughbolt	See Annex C 8
Displacements under shear loads for Option 1 Throughbolt	See Annex C 9
Displacements under tension and shear loads for Option 1 Throughbolt ITS	See Annex C 14

Page 4 of 32 | 7 May 2015

European Technical Assessment

ETA-13/0364

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for Option 1 Throughbolt	See Annex C 7
Resistance to fire for Option 1 Throughbolt ITS	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3) Not applicable.

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

European Technical Assessment ETA-13/0364 English translation prepared by DIBt

Page 5 of 32 | 7 May 2015

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 May 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Option 1 Throughbolt							
Conical bolt	Expansion sleeve	е	Washer	Hexagon r	nut		
			· · · · · · · · · · · · · · · · · · ·]	M8 to	M20	
				-			
			n				
				1	M8 to	M20	
│				L.			
				□/\			
	pq			⊣}	ji		
					● M24 」 (M27	to M27 zinc plated only)	
				_()			
Option 1 Throughbolt I	TS M6 to M12						
Anchor system							
Option 1						-D Hexagon	
Throughbolt		-	- Washer		<u> </u>	head screw	
Option 1	bolt					1 0	
	0	-	Countersu	nk		head screw	
Expansio	 on sleeve				(Commercial	
Option 1		VVa	asher Hexago	on nut	5	standard rod	
ITS B						[<u></u>	
Anchor version Product descrip		on	Intended	use	Р	erformance	
Option 1 Throughbolt	Annex A1 – Annex	A4	Annex B1 – A	Annex B4	Annex	x C1 – Annex C9	
Option 1 Throughbolt ITS	Annex A1 – Annex Annex A5 – Annex	A2 Annex B1 A6 Annex B5 – Annex B7			Annex	C10 – Annex C14	
JCP Option 1 Throughb	olt and Option 1 Thr	ough	nbolt ITS				
Product description						Annex A1	

	Anchor	size		M8	M10	M12	M16	M20	M24	M27
1 Conic	Conical	bolt	Thread	M8	M10	M12	M16	M20	M24	M27
			\emptyset d _k =	7,9	9,8	12,0	15,7	19,7	24	28
Leng	Length of	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fi}
		A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	
	anchor	red. anchorage depth	L _{hef,red}	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}			
2	Expansion	on sleeve				S	ee Table A	.2		
3	Washer			see Table A2						
4	Hexagor	n nut	SW	13	17	19	24	30	36	41

 Table A2:
 Materials Option 1 Throughbolt

No.	Part	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401	Steel acc. to EN 10139-12:1997	Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088:2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated

Product description Dimensions and materials Annex A4

Table A3: Anchor dimensions Option 1 Throughbolt ITS

No.	Anchor size		M6	M8	M10	M12
	Conical bolt with Internal thread	$\oslash d_k$	7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ible A4	
3	Washer			see ta	ble A4	
	Hexagon head screw	th across flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D	Ls	14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk Ø co		17,3	21,5	25,9	30,9
5	washer	t	3,9	5,0	5,7	6,7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Installation type V	L _{sk}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D	L _{sk}	16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
。	Commercial type V	$L_{B} \geq$	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
°	standard rod ¹⁾ type D	$L_{B} \geq$	21	28	34	41
¹⁾ ac	c. to specifications (Table A4)				C	imensions in mm
JCP (Option 1 Throughbolt IT	S				

Product description Anchor parts, marking and dimensions

No.	Part	Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR	
1	Conical bolt Option 1 Throughbolt ITS with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated	
2	Expansion sleeve Option 1 Throughbolt ITS	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005	
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated	
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated	
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated	
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated	
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 $A_5 > 8 \%$ ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009	

JCP Option 1 Throughbolt ITS

Product description Materials Annex A6

Specifications of intende	Specifications of intended use									
Option 1 Throughbolt		M8	M10	M12	M16	M20	M24	M27		
Static or quasi-static action					✓					
Seismic action (Categorie C1 + C2	!) ^{1) 2)}		✓	✓	✓	✓				
Reduced anchorage depth ²⁾		✓	✓	✓	✓					
Fire exposure ¹⁾					✓					
Cracked and non-cracked					✓					
Option 1 Throughbolt ITS	M6	M8	M10	M12						
Static or quasi-static action			✓							
Seismic action										
Fire exposure		\checkmark								
Cracked and non-cracked			✓							

¹⁾ only for standard anchorage depth
 ²⁾ only cold formed anchors acc. to Annex A3

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4: 2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur)

JCP Option 1 Throughbolt and Option 1 Throughbolt ITS

Intended use Specifications

Deutsches Institut für Bautechnik

	motanation	parame			inioug					
Anchor size				M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	do	[mm]	8	10	12	16	20	24	28
Cutting diam	eter of drill bit	$d_{cut} \le$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	300
torque	A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	
$\begin{array}{c c} \mbox{Diameter of clearance} & $d_f \leq $ [mm] \\ \mbox{hole in the fixture} & \end{array}$			9	12	14	18	22	26	30	
Standard an	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
depth	A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	
Reduced an	chorage depth									
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effe	ective epth	h _{ef,red}	[mm]	35	40	50	65			

Table B1: Installation parameters Option 1 Throughbolt

Table B2:Minimum spacings and edge distances, reduced anchorage depth, Option 1
Throughbolt

Anchor size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	50	50	65
Minimum spacing	for $c \ge$	[mm]	60	100	160	170
Minimum edge distance	C _{min}	[mm]	40	65	65	100
Minimum edge distance	for s \geq	[mm]	185	180	250	250
Non-cracked concrete						
Minimum choosing	S _{min}	[mm]	50	50	50	65
Minimum spacing	for $c \ge$	[mm]	60	100	160	170
Minimum adaa distance	C _{min}	[mm]	40	65	100	170
winning euge distance	for $s \ge$	[mm]	185	180	185	65

JCP Option 1 Throughbolt

Intended use

Installation parameters, Minimum spacings and edge distances for reduced anchorage depth

Table B3:Minimum spacings and edge distances, standard anchorage depth,
Option 1 Throughbolt

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	member								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete				·		·			
Minimum spacing	S _{min}	[mm]	40	45	60	60	95	100	125
	for $c \ge$	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	for s \geq	[mm]	80	90	140	180	200	220	540
Non-cracked concrete				-					
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	for $c \ge$	[mm]	80	70	120	120	180	180	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	180
	for s \geq	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	
Cracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	/
	for $c \ge$	[mm]	70	75	100	100	150	125	
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	for $s \ge$	[mm]	80	90	140	180	200	125	
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	60	65	90	125	
	for $c \ge$	[mm]	80	75	120	120	180	125	
Minimum edge distance	Cmin	[mm]	50	60	75	80	130	125	
	for $s \ge$	[mm]	100	120	150	150	240	125	\vee
Minimum thickness of concrete	member								
Steel zinc plated and stainless	steel A4, H	CR							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140			
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	45	60	70			
	for $c \ge$	[mm]	70	90	100	160] /		
Minimum edge distance	C _{min}	[mm]	40	50	60	80] /		
	for $s \ge$	[mm]	80	115	140	180	\mathcal{V}		
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	60	60	80			
	for c \geq	[mm]	80	140	120	180			
Minimum edge distance	Cmin	[mm]	50	90	75	90			
	for s \geq	[mm]	100	140	150	200			\checkmark
Fire exposure from one side									
Minimum spacing	Smin fi	[mm]			See n	ormal am	pient tempe	rature	
Minimum edge distance	Cmin fi	[mm]			See n	ormal am	pient tempe	rature	
Fire exposure from more than o	ne side								
Minimum spacing	Smin 6	[mm]			See n	ormal am	pient tempe	rature	
Minimum edge distance	Cresia 6	[mm]			0001	> 300	mm	aturo	
	⊂min, r i	[[run]				2 300			
ntermediate values by linear interpol	lation.								
ICD Option 1 Throughhol									

Intended use

Minimum spacings and edge distances for standard anchorage depth

Installation instructions Option 1 Throughbolt

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
 Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

JCP Option 1 Throughbolt

Intended Use Installation instructions

Deutsches Institut DIBt für Bautechnik

Anchor size				M6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{\text{cut}} \le$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{2)} \ge$	[mm]	9	12	15	18
Installation moment		S	[Nm]	10	30	30	55
	T _{inst}	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
Installation moment		S	[Nm]	15	40	50	100
	T _{inst}	SK	[Nm]	12	25	45	60
		В	[Nm]	8	25	40	80
Installation type V (Pre-setting	installatio	n)					
Diameter of clearance hole in the	e fixture	$d_{f} \leq$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-se	etting insta	allation)					
Diameter of clearance hole in the	e fixture	$d_{f} \leq$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture ¹⁾	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm. ²⁾ see Annex A2

Minimum spacings and edge distances Option 1 Throughbolt ITS Table B5:

Anchor size			M6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	for $c \ge$	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	for $s \ge$	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	for $c \ge$	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for $s \ge$	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]	:	See normal	temperatur	e
Minimum edge distance	C _{min,fi}	[mm]	:	See normal	temperatur	e
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperatur	e
Minimum edge distance	C _{min,fi}	[mm]		≥ 300	0 mm	

JCP Option 1 Throughbolt ITS

Intended use

Installation parameters, minimum spacings and edge distances

Installation instructions Option 1 Throughbolt ITS

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

Installation instructions Option 1 Throughbolt ITS

Through-setting installation

JCP Option 1 Throughbolt ITS

Intended Use

Installation instructions for through-setting installation

Table C1: Characteristic va cracked concre	alues for t e ete, static a	ensio and q	n loads uasi-sta	s, Optior itic actio	ר 1 Thrc n,	oughbolt	zinc pl	ated,	
design method A	A accordin	g to É	TAG 00	01, Anne	ex C or	CEN/TS	\$ 1992-4	ŀ	
Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure									
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ́Ms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth					I			L	
Characteristic resistance in concrete C20/25	N _{Rk,p,red}	[kN]	5	7,5	1)	1)			
Increasing factor for $N_{Rk,p}$ and $N_{Rk,p,red}$	ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$	5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
Factor according to CEN/TS 1992-4	k _{cr}	[-]				7,2	v		<u>v.</u>

¹⁾ Pull-out is not decisive.

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Characteristic values for **tension loads**, Option 1 Throughbolt **zinc plated cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	γ2 = γinst	[-]				1,0	<u> </u>	
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γ́Ms	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)		
Increasing factor for $N_{Rk,p \text{ and }} N_{Rk,p,red}$	ψς	[-]			$\left(\frac{f_{ch}}{f_{ch}}\right)$	$\left(\frac{x,cube}{25}\right)^{0,5}$		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor according to CEN/TS 1992-4	k _{cr}	[-]				7,2		

¹⁾ Pull-out is not decisive.

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Anchor size Installation safety factor $\gamma_2 = \gamma_{ins}$ Steel failure Standard anchorage depth Characteristic resistance NRk.	t [-] s [kN] s [-]	M8	M10	M12	M16	M20	M24	M27
stallation safety factor $\gamma_2 = \gamma_{ins}$ iteel failure Standard anchorage depth Characteristic tension resistance N_Rk, Partial safety factor γ_{Min}	t [-] s [kN] s [-]					IVIZO	1012-1	
Steel failure Characteristic tension resistance N _{Rk,i} Partial safety factor γM Pull-out Standard anchorage depth Characteristic resistance in N	s [kN] 3 [-]				1,0			
Characteristic tension resistance N _{Rk} , Partial safety factor γM Pull-out Standard anchorage depth Standard enchorage depth N	s [kN] s [-]							
Partial safety factor γм Pull-out Standard anchorage depth Sharacteristic resistance in	s [-]	16	27	40	60	86	126	196
Pull-out Standard anchorage depth Tharacteristic resistance in	<u> </u>	1,	53	1	,5	1,6	1	,5
Standard anchorage depth								
haracteristic resistance in								
on-cracked concrete C20/25	, [kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth			_					
haracteristic resistance in on-cracked concrete C20/25	3 [kN]	7,5	9	1)	1)			
plitting For the proof against splitting failure $N^0_{Rk,c}$	has to be	replaced b	y N ⁰ _{Rk,sp} with	n considera	tion of the m	nember thick	ness	
Standard anchorage depth								
plitting for standard thickness of concrete n to values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolated	1ember (for the me	The higher mber thick	⁻ resistance ness h _{min} <⊺	of case 1 a h < h _{std} (Ca	nd case 2 m se 2); ψ _{h,sp} =	nay be applie 1,0)	ed;	
tandard thickness of concrete h _{min,1} ≥	: [mm]	100	120	140	170	200	230	250
Case 1								
haracteristic resistance in on-cracked concrete C20/25	p [kN]	9	12	20	30	40	1)	50
spacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$) [mm]				3 h _{ef}			
Case 2								-
haracteristic resistance	, [kN]	12	16	25	35	1)	1)	1)
i non-cracked concrete C20/25			4			4.4.b	2 h	Eh
placing (euge distance) S _{cr,sp} (- 2 c _{cr,sp}	, [!!!!] nombor		4	Hef		4,4 Ilef	Jllef	JI
inimum thickness of concrete			100	120	140			1
haracteristic resistance		- 00	100	120	140			
non-cracked concrete C20/25	p [kN]	12	16	25	35			
spacing (edge distance) s _{cr,sp} (= 2 c _{cr,sp}) [mm]		5	h _{ef}				
Reduced anchorage depth						r		
/inimum thickness of concrete h _{min.3} ≥	2 [mm]	80	80	100	140		/	
haracteristic resistance		7 5	٩	1)	1)			
non-cracked concrete C20/25		7,0						
		200	200	250	300		/	\checkmark
pacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$) [mm]							
pacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$ icreasing factor ψ or $N_{Rk,p(red)}$ and $N^0_{Rk,sp}$ ψ	c [-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$			
spacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$ ncreasing factor ψ or $N_{Rk,p(red)}$ and $N^0_{Rk,sp}$ ψ concrete cone failure	c [-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,\varepsilon}$			
Spacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$ increasing factor ψ for $N_{Rk,p(red)}$ and $N^0_{Rk,sp}$ ψ concrete cone failure.ffective anchorage depth h_d	, [mm] c [-]	46	60	70	$\left(\frac{f_{ck,cube}}{25}\right)^{0,\varepsilon}$ 85	100	115	125
Spacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$ increasing factor ψ for $N_{Rk,p(red)}$ and $N_{Rk,sp}^0$ ψ concrete cone failureiffective anchorage depth $h_{ef,red}$ teduced anchorage depth $h_{ef,red}$	c [-]	46 35 ²⁾	60 40	70 50	$\frac{\left(\frac{f_{ck,cube}}{25}\right)^{0,\varepsilon}}{85}$	100	115	125

Anchor size			M8	M10	M12	M16	M20	M24
nstallation safety factor	$\sqrt{2} = \sqrt{10}$	[-]				1,0		
Steel failure	72 - 7 liist					,		
Characteristic tension resistance	N _{Rks}	[kN]	16	27	40	64	108	110
Partial safety factor	۷Ms	[-]		1.	5		1.68	1.5
Pull-out	1410	.,					.,	.,-
Standard anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p,red}	[kN]	7,5	9	1)	1)		
Splitting For the proof against splittin	g failure N ⁰ _{Rk,c} has to) be repla	aced by N ⁰ _{Rk}	_{,sp} with consid	deration of th	ne member	thickness	
Standard anchorage depth								
Splitting for standard thickness o he values $s_{\alpha,sp}$ and $c_{\alpha,sp}$ may be linear	of concrete memb	er (The e membe	higher resist r thickness h	ance of case n _{min} < h < h _{std}	1 and case (Case 2); ψι	2 may be a _{n.sp} = 1,0)	pplied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1							_	
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]			3	1 _{ef}		
Case 2							-	
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	1)	1)
Spacing (edge distance)	Series (= 2 Cories)	[mm]	230	250	280	400	440	500
Splitting for minimum thickness	of concrete mem	ber					1	1
Vinimum thickness of concrete	h _{min 2} ≥	[mm]	80	100	120	140		1
Characteristic resistance in	NI ⁰ -		12	16	25	35		/
non-cracked concrete C20/25	IN Rk,sp	נגואן	12	10	25			
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		5	h _{ef}			
Reduced anchorage depth								1
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140	/	
non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	1)	1)		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300	\bigvee	\bigvee
ncreasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψc	[-]			$\left(\frac{f_{ck,cu}}{25}\right)$	$\frac{be}{d}$) ^{0,5}		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor according to CEN/TS 1992	2-4 k _{ucr}	[-]				10,1		
Pull-out is not decisive.		.,						
Use restricted to anchoring of structu	ral components stati	cally inde	eterminate.					

Table C5: Characteristic values for shear loads, Option 1 Throughbolt,cracked and non-cracked concrete, static or quasi static action,design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size				M8	M10	M12	M16	M20	M24	M27
Installation safety fact	tor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure without	it lever arm, Steel	zinc pla	ted							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility		k ₂	[-]				1,0			
Partial safety factor		γ́Ms	[-]		1,	25		1,33	1,25	1,25
Steel failure without	it lever arm, Stain	less stee	el A4, H	ICR						
Characteristic shear	resistance	V _{Rk,s}	[kN]	13	20	30	55	86	123,6	
Factor for ductility		k ₂	[-]				1,0	<u>.</u>		
Partial safety factor		γ́Ms	[-]		1,	25		1,4	1,25	
Steel failure with le	ver arm, Steel zin	c plated								
Characteristic bendir	ng resistance	M ⁰ _{Rk,s}	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor	γ́Ms	[-]		1,	25		1,33	1,25	1,25	
Steel failure with le	ver arm, Stainles	s steel A	4, HCR							
Characteristic bendir	ng resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	200	454	785,4	
Partial safety factor		γ́мs	[-]		1,	25		1,4	1,25	\angle
Concrete pry-out fa	ailure									
Factor k acc. ETAG k ₃ acc. CEN/TS 199;	001, Annex C or 2-4	k ₍₃₎	[-]		2,	4			2,8	
Concrete edge failu	lre									
Effective length of	Steel zinc plated	١ _f	[mm]	46	60	70	85	100	115	125
loading with h _{ef}	Stainless steel A4, HCR	١ _f	[mm]	46	60	70	85	100	125	
Effective length of	Steel zinc plated	I _{f,red}	[mm]	35	40	50	65			\Box
loading with h _{ef,red}	Stainless steel A4, HCR	I _{f,red}	[mm]	35	40	50	65			
Outside diameter of	anchor	\mathbf{d}_{nom}	[mm]	8	10	12	16	20	24	27

JCP Option 1 Throughbolt

Performance

Characteristic values for **shear loads**, Option 1 Throughbolt, **cracked** and **non-cracked concrete**, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C6: Characteristic resistance for seismic loading, Option 1 Throughbolt, standard anchorage depth, performance category C1 and C2, design according to TR045

Tension loads						
Anchor size			M10	M12	M16	M20
Installation safety factor	γ2 = γinst	[-]		1	,0	
Steel failure, steel zinc pla	ated					
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	27	40	60	86
Characteristic resistance C2	$N_{Rk,s,seis,C2}$	[kN]	27	40	60	86
Partial safety factor	γ̃Ms,seis	[-]	1,53	1	,5	1,6
Steel failure, stainless ste	eel A4, HCR					
Characteristic resistance C1	$N_{Rk,s,scis,C1}$	[kN]	27	40	64	108
Characteristic resistance C2	$N_{Rk,s,seis,C2}$	[kN]	27	40	64	108
Partial safety factor	γ̃Ms,seis	[-]		1,5		1,68
Pull-out						
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	9	16	25	36
Characteristic resistance C2	N _{Rk,p,seis,C2}	[kN]	3,6	10,2	13,8	22,4

Shear loads						
Steel failure without leve	ver arm, Steel	zinc p	lated			
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	20	27	44	69
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2
Partial safety factor	γ̃Ms,seis	[-]		1,25		1,33
Steel failure without leve	ver arm, Stainl	ess si	teel A4, HCR			
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2
Partial safety factor	γ̃Ms,seis	[-]		1,25		1,4

JCP Option 1 Throughbolt

Performance

Characteristic resistance for **seismic loading**, Option 1 Throughbolt, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045

Table C7: Ch Th C2	roughbolt, 0/25 to C5	standa 0/60, de	rd anc esign a	horage	depth, or R 020 or	cracked CEN/TS	and non 5 1992-4	-cracked , Annex	d concre	te							
Anchor size		,		M8	M10	M12	M16	M20	M24	M27							
Tension load																	
Steel failure																	
Steel zinc plate	ed																
-	R30			1,4	2,2	3,2	6,0	9,4	13,6	17,6							
Characteristic	R60	N	11-5-11	1,1	1,8	2,8	5,2	8,2	11,8	15,3							
resistance	R90	N _{Rk,s,fi}	[κΝ]	0,8	1,4	2,4	4,4	6,9	10,0	13,0							
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8							
Stainless steel	A4, HCR			•	•	•											
	R30			3,8	6,9	11,5	21,5	33,5	48,2	/							
Characteristic	R60	N	[[201]	2,9	5,2	8,6	16	25,0	35,9								
resistance	R90	NRk,s,fi	[KIN]	2,0	3,5	5,6	10,5	16,4	23,6	1/							
	R120			1,6	2,7	4,2	7,8	12,1	17,4	\mathcal{V}							
Shear load																	
Steel failure wi	thout lever a	arm															
Steel zinc plate	ed																
	R30		_	-	-	-					1,6	2,6	3,8	7,0	11	16	20,6
Characteristic	R60		Vətat	11. N 13	1,5	2,5	3,6	6,8	11	15	19,8						
resistance	R90	VRk,s,fi	Rk,s,fi [KN]	1,2	2,1	3,5	6,5	10	15	19,0							
	R120			1,0	2,0	3,4	6,4	10	14	18,6							
Stainless steel	A4, HCR																
	R30			3,8	6,9	11,5	21,5	33,5	48,2								
Characteristic	R60	V	11-5-11	2,9	5,2	8,6	16	25,0	35,9								
resistance	R90	V Rk,s,fi	[κΝ]	2,0	3,5	5,6	10,5	16,4	23,6	1 /							
	R120			1,6	2,7	4,2	7,8	12,1	17,4	V							
Steel failure wi	th lever arm									-							
Steel zinc plate	ed																
	R30			1,7	3,3	5,9	15	29	50	75							
Characteristic	R60	. .0	D []	1,6	3,2	5,6	14	28	48	72							
resistance	R90	W I [°] Rk,s,fi	ĮNMJ	1,2	2,7	5,4	14	27	47	69							
	R120			1,1	2,5	5,3	13	26	46	68							
Stainless steel	A4, HCR																
	R30			3,8	9,0	17,9	45,5	88,8	153,5	/							
Characteristic	R60	N 40	[]	2,9	6,8	13,3	33,9	66,1	114,3	1 /							
resistance	R90	IVI ⁻ _{Rk,s,fi}	[NM]	2,1	4,5	8,8	22,2	43,4	75,1	1 /							
	R120			1,6	3,4	6,5	16,4	32,1	55,5	1/							

to TR020 / CEN/TS 1992-4. If pull-out is not decisive $N_{Rk,p}$ in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by $N_{Rk,c}^0$.

JCP Option 1 Throughbolt

Performance

Characteristic values for tension and shear load under fire exposure, Option 1 Throughbolt, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	Ν	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ _{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	δ_{N^∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ _{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	δ _{N∞}	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension I	oads C2	•				•			•
Displacements for DLS δ	N,seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		1
Displacements for ULS δ	N,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Stainless steel A4, HCR								×	2
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	/
Displacement	δ _{ΝΟ}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	
	δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	/
Displacement	δ _{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	
	δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension I	oads C2								
Displacements for DLS 8	N,seis,C2(DLS)	[mm]	\square	4,1	4,9	3,6	5,1		
Displacements for ULS 8	N,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Reduced anchorage depth									
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			1 /
Displacement	δ _{N0}	[mm]	0,8	0,7	0,5	1,0			
	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1			
Tension load in non-cracked concrete	N	[kN]	3,7	4,3	8,5	12,6	/	/	1 /
Displacement	δ _{ΝΟ}	[mm]	0,1	0,2	0,2	0,2			
-	<u></u>		0.7	0.7	0.7	0.7	1/		/

JCP Option 1 Throughbolt

Performance Displacements under tension load

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage de	epth					•	•		
Steel zinc plated									
Shear load in cracked an non-cracked concrete	d v	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δ _{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	δ_{V^∞}	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under sei	smic shear	loads C	2						
Displacements for DLS δ^{i}	V,seis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS δ^{i}	V,seis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Stainless steel A4, HCR	1								
Shear load in cracked an non-cracked concrete	d v	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δ _{V0}	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	
	δ_{V^∞}	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under sei	smic shear	loads C	2						
Displacements for DLS δ^{i}	V,seis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS δ	V,seis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Reduced anchorage de	epth								
Steel zinc plated									
Shear load in cracked an non-cracked concrete	d v	[kN]	6,9	11,4	17,1	31,4			
Displacement	δ _{V0}	[mm]	2,0	3,2	3,6	3,5			
	δ_{V^∞}	[mm]	3,0	4,7	5,5	5,3		\vee	
Stainless steel A4, HCR									
Shear load in cracked an non-cracked concrete	d v	[kN]	7,3	11,4	17,1	31,4			/
Displacement	δ _{V0}	[mm]	1,9	2,4	4,0	4,3] /		
	8	[mm]	29	3.6	59	64	1/	/	

JCP Option 1 Throughbolt

Performance Displacements under shear load

Anchor size			M6	M8	M10	M12	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	$\gamma_2 = \gamma_{inst}$ [-] 1,2					
Steel failure							
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6	
Partial safety factor	γ́Ms	[-]	1,5				
Characteristic tension resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0	
Partial safety factor	γ̂Ms	[-]	1,87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	9	12	20	
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor according to CEN/TS 1992-4	k _{cr}	[-]		7	,2		

JCP Option 1 Throughbolt ITS

Performance Characteristic values for tension loads, Option 1 Throughbolt ITS, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

non-cracked cond design method A a	ccording to E	and qua	asi-static a 001, Anne>	ction, C or CEN	/TS 1992-4	1		
Anchor size			M6	M8	M10	M12		
Installation safety factor	allation safety factor $\gamma_2 = \gamma_{inst}$ [-]			1,2				
Steel failure								
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6		
Partial safety factor	γ́Ms	[-]		1	,5	•		
Characteristic tension resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0		
Partial safety factor	γ́Ms	[-]	1,87					
Pull-out								
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	20	30		
Splitting (N ⁰ _{Rk,c} has to be replace	ed by N ⁰ _{Rk,sp.} The hi	gher resist	tance of Case 1	and Case 2 ma	y be applied.)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160		
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	3 h _{ef}					
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30		
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	5 h _{ef}					
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80		
Factor according to CEN/TS 1992	-4 kuer	[-]		10).1			

JCP Option 1 Throughbolt ITS

Performance Characteristic values for tension loads, Option 1 Throughbolt ITS, non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

ble C12: Characteristic values for s cracked and non-cracked design method A accordir	shear loa ed concre ng to ETA	ids, <mark>O</mark> ete, sta \G 001	otion 1 Th atic and qu , Annex C	asi-static a or CEN/T	action , S 1992-4			
Anchor size			M6	M8	M10	M12		
Installation safety factor		1	,0					
Option 1 Throughbolt ITS, steel zinc pl	ated				• 			
Steel failure without lever arm, Installa	tion type \	1						
Characteristic shear resistance	V _{Rk.s}	[kN]	5,8	6,9	10,4	25,8		
Steel failure without lever arm, Installa	tion type [)						
Characteristic shear resistance	V _{Rk,s}	[kN]	5,1	7,6	10,8	24,3		
Steel failure with lever arm, Installation	n type V							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6		
Steel failure with lever arm, Installation	n type D							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	36,0	53,2	76,0	207		
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γ́мs	[-]	1,25					
Factor of ductility	k ₂	[-]	1,0					
Option 1 Throughbolt ITS, stainless sto	eel A4, HC	R						
Steel failure without lever arm, Installa	tion type \	/						
Characteristic shear resistance	V _{Rk,s}	[kN]	5,7	9,2	10,6	23,6		
Partial safety factor	γ́Ms	[-]		1,25				
Steel failure without lever arm, Installa	tion type [)						
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6		
Partial safety factor	γ́Ms	[-]		1,25				
Steel failure with lever arm, Installation	n type V							
Characteristic bending resistance	М ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6		
Partial safety factor	γ́Ms	[-]		1,	56			
Steel failure with lever arm, Installation	n type D							
Characteristic bending resistance	М ⁰ _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2		
Partial safety factor	γ́Ms	[-]	1,25					
Factor of ductility	k ₂	[-]		1,	0			
Concrete pry-out failure								
Factor k acc. ETAG 001, Annex C or k_3 acc. CEN/TS 1992-4	k ₍₃₎	[-]	1,5	1,5	2,0	2,0		
Concrete edge failure								
Effective length of anchor in shear loading	l _f	[mm]	45	58	65	80		
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16		

JCP Option 1 Throughbolt ITS

Performance

Characteristic values for shear loads, Option 1 Throughbolt ITS, cracked and non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C13: Characteristic values for tension and shear load under fire exposure, Option 1 Throughbolt ITS, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D Anchor size M6 M10 M12 M8 **Tension load** Steel failure Steel zinc plated R30 0,7 1.4 2.5 3,7 R60 0,6 1,2 2,0 2,9 Characteristic [kN] N_{Rk.s.fi} resistance R90 0.5 0.9 1.5 2.2 R120 0.4 0,8 1.3 1.8 Stainless steel A4, HCR R30 2,9 5.4 8,7 12.6 R60 3,8 6,3 1,9 9,2 Characteristic [kN] N_{Rk,s,fi} resistance R90 1.0 2.1 3.9 5.7 R120 0.5 1.3 2.7 4.0 Shear load Steel failure without lever arm Steel zinc plated R30 0,7 1.4 2.5 3,7 0,6 1,2 2,0 2,9 Characteristic R60 V_{Rk,s,fi} [kN] resistance R90 0,5 0,9 1,5 2,2 R120 0.4 8,0 1,3 1,8 Stainless steel A4, HCR 2,9 12.6 R30 5,4 8,7 R60 1,9 3,8 6,3 9,2 Characteristic V_{Rk.s.fi} [kN] resistance R90 1,0 2.1 3.9 5,7 R120 0.5 1.3 2.7 4.0 Steel failure with lever arm Steel zinc plated R30 0.5 1,4 3,3 5.7 2,6 R60 0,4 1,2 4,6 Characteristic M⁰_{Rk,s,fi} [Nm] resistance R90 0,4 0,9 2,0 3,4 R120 0,3 0,8 1,6 2,8 Stainless steel A4, HCR R30 2,2 5,5 11,2 19,6 R60 1,5 3,9 8,1 14,3 Characteristic M⁰_{Rk.s.fi} [Nm] resistance R90 0,7 2,2 5,1 8,9 R120 0,4 1,3 3,5 6,2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

JCP Option 1 Throughbolt ITS

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, Option 1 Throughbolt ITS, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Table C14: Dis	placements under	tension load.	Option 1	Throughbolt ITS

Anchor size			M6	M8	M10	M12
Tension load in cracked concrete	Ν	[kN]	2,0	3,6	4,8	8,0
Displacements	δ _{N0}	[mm]	0,6	0,6	0,8	1,0
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	Ν	[kN]	4,8	6,4	8,0	12,0
Displacements	δ _{N0}	[mm]	0,4	0,5	0,7	0,8
	δ_{N^∞}	[mm]	0,8	0,8	1,2	1,4

Table C15: Displacements under shear load, Option 1 Throughbolt ITS

Anchor size			M6	M8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ _{vo}	[mm]	2,8	2,9	2,5	3,6
	$\delta_{V\!\!\infty}$	[mm]	4,2	4,4	3,8	5,3

JCP Option 1 Throughbolt ITS

Performance Displacements under tension load and under shear load